Namespaces
Variants
Actions

Difference between revisions of "Classifying space"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
The base <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c0224401.png" /> of a universal fibre bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c0224402.png" />.
+
<!--
 +
c0224401.png
 +
$#A+1 = 135 n = 0
 +
$#C+1 = 135 : ~/encyclopedia/old_files/data/C022/C.0202440 Classifying space
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
The universality of the bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c0224403.png" /> is to be understood in the following sense. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c0224404.png" /> be the set of equivalence classes (with respect to a notion of isomorphism (covering the identity mapping of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c0224405.png" />)) of locally trivial bundles over the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c0224406.png" />-complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c0224407.png" /> with structure group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c0224408.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c0224409.png" /> is a locally trivial bundle with structure group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244011.png" /> is a topological space and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244012.png" /> are homotopic mappings, then the induced bundles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244014.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244015.png" /> belong to the same class in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244016.png" />. A locally trivial bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244017.png" /> is now called universal if the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244019.png" />, is one-to-one (and onto) for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244020.png" />. In this case, the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244021.png" /> is called a classifying space of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244022.png" />. A principal bundle with structure group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244023.png" /> is universal (in the class of locally trivial bundles over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244024.png" />-complexes) if the space of the bundle has trivial homotopy groups.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
The most important examples of classifying spaces are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244026.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244028.png" /> for the respective groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244030.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244031.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244032.png" />, and are constructed as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244033.png" /> be the [[Grassmann manifold|Grassmann manifold]]; it is the base of the principal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244034.png" />-bundle with the [[Stiefel manifold|Stiefel manifold]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244035.png" /> as total space. The natural imbeddings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244036.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244037.png" /> allow one to form the unions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244038.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244039.png" />. The bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244040.png" /> is universal and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244041.png" /> is a classifying space for the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244042.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244043.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244044.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244045.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244046.png" />). The Grassmann manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244047.png" /> (the space of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244048.png" />-dimensional planes with a fixed orientation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244049.png" />) leads in analogous fashion to the classifying space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244050.png" /> for the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244051.png" />. The classifying spaces for the groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244052.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244053.png" /> are similarly constructed, but with the difference that here complex Grassmann manifolds are considered.
+
The base  $  B _ {0} $
 +
of a universal fibre bundle $  \xi = ( E _ {0} , p _ {0} , B _ {0} ) $.
  
For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244054.png" />-bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244055.png" /> (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244056.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244057.png" />-complex) there exists a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244058.png" /> under which the induced bundle over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244059.png" /> is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244060.png" />. In the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244061.png" /> is a smooth <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244062.png" />-dimensional manifold and the principal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244063.png" />-bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244064.png" /> is associated with the tangent vector bundle to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244065.png" />, the construction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244066.png" /> is especially simple: The manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244067.png" /> is imbedded in a Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244068.png" /> for sufficiently large <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244069.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244070.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244071.png" />, is taken to coincide with the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244072.png" />-dimensional subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244073.png" /> obtained by a displacement of the tangent space to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244074.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244075.png" />. The Grassmann manifolds provide a convenient method of constructing classifying spaces for vector bundles. There are also constructions enabling one to construct classifying spaces functorially for any topological group. The most commonly used is the Milnor construction <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244076.png" /> (see [[Principal fibre bundle|Principal fibre bundle]]) for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244077.png" /> is universal in the wider category of all numerable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244078.png" />-bundles over an arbitrary topological space.
+
The universality of the bundle $  \xi $
 +
is to be understood in the following sense. Let  $  k _ {G} ( X) $
 +
be the set of equivalence classes (with respect to a notion of isomorphism (covering the identity mapping of  $  X $))
 +
of locally trivial bundles over the $  \mathop{\rm CW} $-
 +
complex  $  X $
 +
with structure group  $  G $.  
 +
If  $  \xi = ( E, p, B) $
 +
is a locally trivial bundle with structure group  $  G $,  
 +
$  B ^ { \prime } $
 +
is a topological space and $  f, g: B ^ { \prime } \rightarrow B $
 +
are homotopic mappings, then the induced bundles  $  f ^ { ! } ( \xi ) $
 +
and  $  g ^ {! } ( \xi ) $
 +
over  $  B ^ { \prime } $
 +
belong to the same class in  $  k _ {G} ( B ^ { \prime } ) $.  
 +
A locally trivial bundle  $  \xi  ^ {G} = ( EG, p, BG) $
 +
is now called universal if the mapping  $  [ X, BG] \rightarrow k _ {G} ( X) $,
 +
$  f \rightarrow f  ^ {*} ( \xi  ^ {G} ) $,
 +
is one-to-one (and onto) for any $  X $.  
 +
In this case, the space  $  BG $
 +
is called a classifying space of the group  $  G $.  
 +
A principal bundle with structure group  $  G $
 +
is universal (in the class of locally trivial bundles over $  \mathop{\rm CW} $-
 +
complexes) if the space of the bundle has trivial homotopy groups.
  
Classifying spaces play an important role for spherical bundles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244079.png" /> over a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244080.png" />-complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244081.png" />; the Milnor construction is not suitable for the construction of the spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244082.png" /> (and of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244083.png" /> for orientable spherical bundles) since the set of homotopy equivalences <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244084.png" /> is not a group but an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244085.png" />-space. An explicit construction of these spaces is given in [[#References|[2]]]. There also exist classifying spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244086.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244087.png" /> for piecewise-linear and topological microbundles.
+
The most important examples of classifying spaces are  $  \mathop{\rm BO} _ {n} $,
 +
$  \mathop{\rm BSO} _ {n} $,
 +
$  \mathop{\rm BU} _ {n} $,
 +
$  \mathop{\rm BSU} _ {n} $
 +
for the respective groups  $  \textrm{ O } _ {n} $,
 +
$  \mathop{\rm SO} _ {n} $,
 +
$  \textrm{ U } _ {n} $,
 +
$  \mathop{\rm SU} _ {n} $,
 +
and are constructed as follows. Let  $  G ( n, k) $
 +
be the [[Grassmann manifold|Grassmann manifold]]; it is the base of the principal  $  \textrm{ O } _ {n} $-
 +
bundle with the [[Stiefel manifold|Stiefel manifold]]  $  V ( n, k) $
 +
as total space. The natural imbeddings  $  G ( n, k) \subset  G ( n, k + 1) $
 +
and  $  V ( n, k) \subset  V ( n, k + 1) $
 +
allow one to form the unions  $  G ( n) = \cup _ {k = 1 }  ^  \infty  G ( n, k) $
 +
and $  V ( n) = \cup _ {k = 1 }  ^  \infty  V ( n, k) $.  
 +
The bundle  $  ( V ( n), p _ {0} , G ( n)) $
 +
is universal and  $  G ( n) = \mathop{\rm BO} _ {n} $
 +
is a classifying space for the group $  \textrm{ O } _ {n} $(
 +
$  \pi _ {i} V ( n, k) = 0 $
 +
for  $  i < k - 1 $
 +
and  $  \pi _ {i} V ( n) = 0 $
 +
for all  $  i $).  
 +
The Grassmann manifold  $  \widetilde{G}  ( n, k) $(
 +
the space of $  n $-
 +
dimensional planes with a fixed orientation in  $  \mathbf R  ^ {n} $)
 +
leads in analogous fashion to the classifying space  $  \cup _ {k = 1 }  ^  \infty  \widetilde{G}  ( n, k) = \widetilde{G}  ( n) = \mathop{\rm BSO} _ {n} $
 +
for the group  $  \mathop{\rm SO} _ {n} $.  
 +
The classifying spaces for the groups  $  \mathop{\rm BU} _ {n} $
 +
and $  \mathop{\rm BSU} _ {n} $
 +
are similarly constructed, but with the difference that here complex Grassmann manifolds are considered.
  
There is a natural mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244088.png" /> corresponding to the addition of a one-dimensional trivial bundle to a vector bundle. The mapping can be regarded as an imbedding, so that it makes sense to consider the union <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244089.png" /> in the inductive limit topology. The spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244090.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244091.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244092.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244093.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244094.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244095.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244096.png" />, etc., are constructed in a completely analogous fashion. These are classifying spaces for stable equivalence classes of bundles given over connected finite <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244097.png" />-complexes. All these spaces have <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244098.png" />-space structures coming from the operation of Whitney sums of fibre bundles.
+
For any  $  \textrm{ O } _ {n} $-
 +
bundle  $  ( E, p, B) $(
 +
where  $  B $
 +
is a $  \mathop{\rm CW} $-
 +
complex) there exists a mapping $  f: B \rightarrow G ( n) $
 +
under which the induced bundle over  $  B $
 +
is isomorphic to  $  ( E, p, B) $.  
 +
In the case when  $  B $
 +
is a smooth  $  n $-
 +
dimensional manifold and the principal  $  \textrm{ O } _ {n} $-
 +
bundle $  ( E, p, B) $
 +
is associated with the tangent vector bundle to  $  B $,
 +
the construction of  $  f $
 +
is especially simple: The manifold  $  B $
 +
is imbedded in a Euclidean space  $  \mathbf R ^ {n + k } $
 +
for sufficiently large  $  k $
 +
and  $  f ( x) $,
 +
$  x \in B $,  
 +
is taken to coincide with the $  n $-
 +
dimensional subspace of  $  \mathbf R ^ {n + k } $
 +
obtained by a displacement of the tangent space to  $  B $
 +
at  $  x $.  
 +
The Grassmann manifolds provide a convenient method of constructing classifying spaces for vector bundles. There are also constructions enabling one to construct classifying spaces functorially for any topological group. The most commonly used is the Milnor construction  $  \omega _ {G} $(
 +
see [[Principal fibre bundle|Principal fibre bundle]]) for which  $  \omega _ {G} $
 +
is universal in the wider category of all numerable  $  G $-
 +
bundles over an arbitrary topological space.
  
The term "classifying space" is not used solely in connection with fibre bundles. Sometimes classifying space refers to the representing space (object) for an arbitrary representable functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c02244099.png" /> of the homotopy category into the category of sets. An example of such a classifying space is the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440100.png" /> which classifies in some sense foliations (cf. [[Foliation|Foliation]]) of codimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440101.png" /> on a manifold, or, more generally, Haefliger <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440102.png" />-structures on an arbitrary topological space.
+
Classifying spaces play an important role for spherical bundles  $  BG _ {n} $
 +
over a $  \mathop{\rm CW} $-
 +
complex  $ B $;
 +
the Milnor construction is not suitable for the construction of the spaces  $  BG _ {n} $(
 +
and of  $  BSG _ {n} $
 +
for orientable spherical bundles) since the set of homotopy equivalences  $  S  ^ {n} \rightarrow S  ^ {n} $
 +
is not a group but an  $  H $-
 +
space. An explicit construction of these spaces is given in [[#References|[2]]]. There also exist classifying spaces  $  \mathop{\rm BPl} _ {n} $
 +
and  $  \mathop{\rm BTop} _ {n} $
 +
for piecewise-linear and topological microbundles.
  
====References====
+
There is a natural mapping  $  \mathop{\rm BO} _ {n} \rightarrow  \mathop{\rm BO} _ {n + 1 }  $
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> D. Husemoller"Fibre bundles" , McGraw-Hill (1966)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.M. BoardmanR.M. Vogt,   "Homotopy invariant algebraic structures on topological spaces" , Springer (1973)</TD></TR></table>
+
corresponding to the addition of a one-dimensional trivial bundle to a vector bundle. The mapping can be regarded as an imbedding, so that it makes sense to consider the union  $  \mathop{\rm BO} = \cup _ {n = 1 }  ^ \infty  \mathop{\rm BO} _ {n} $
 +
in the inductive limit topology. The spaces  $  \mathop{\rm BSO} $,  
 +
$   \mathop{\rm BU} $,
 +
$  \mathop{\rm BSU} $,  
 +
$ BG $,
 +
$ BSG $,
 +
$  \mathop{\rm BPl} $,  
 +
$   \mathop{\rm BTop} $,
 +
etc., are constructed in a completely analogous fashion. These are classifying spaces for stable equivalence classes of bundles given over connected finite  $   \mathop{\rm CW} $-
 +
complexes. All these spaces have  $ H $-
 +
space structures coming from the operation of Whitney sums of fibre bundles.
  
 +
The term "classifying space" is not used solely in connection with fibre bundles. Sometimes classifying space refers to the representing space (object) for an arbitrary representable functor  $  T:  H \rightarrow  \mathop{\rm Ens} $
 +
of the homotopy category into the category of sets. An example of such a classifying space is the space  $  B \Gamma _ {q} $
 +
which classifies in some sense foliations (cf. [[Foliation|Foliation]]) of codimension  $  q $
 +
on a manifold, or, more generally, Haefliger  $  q $-
 +
structures on an arbitrary topological space.
  
 +
====References====
 +
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> D. Husemoller, "Fibre bundles" , McGraw-Hill (1966) {{MR|0229247}} {{ZBL|0144.44804}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.M. Boardman, R.M. Vogt, "Homotopy invariant algebraic structures on topological spaces" , Springer (1973) {{MR|0420609}} {{MR|0420610}} {{ZBL|0285.55012}} </TD></TR></table>
  
 
====Comments====
 
====Comments====
Two vector bundles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440103.png" /> are stably equivalent (with respect to some notion of isomorphism) if there are trivial bundles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440104.png" /> such that the Whitney sums (direct sums) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440105.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440106.png" /> are isomorphic in the chosen sense.
+
Two vector bundles $  \xi _ {1} , \xi _ {2} $
 +
are stably equivalent (with respect to some notion of isomorphism) if there are trivial bundles $  \gamma _ {1} , \gamma _ {2} $
 +
such that the Whitney sums (direct sums) $  \xi _ {1} \oplus \gamma _ {1} $
 +
and $  \xi _ {2} \oplus \gamma _ {2} $
 +
are isomorphic in the chosen sense.
  
An open covering <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440107.png" /> of a topological space is numerable if there exists a locally finite partition of unity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440108.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440109.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440110.png" />. A <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440111.png" />-bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440112.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440113.png" /> is numerable if there is a numerable covering <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440114.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440115.png" /> is trivial for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440116.png" />.
+
An open covering $  \{ U _ {i} \} $
 +
of a topological space is numerable if there exists a locally finite partition of unity $  \{ u _ {i} \} $
 +
such that $  u _ {i}  ^ {- 1} (( 0, 1]) \subset  U _ {i} $
 +
for all $  i $.  
 +
A $  G $-
 +
bundle $  \xi $
 +
over $  B $
 +
is numerable if there is a numerable covering $  \{ U _ {i} \} $
 +
such that $  G\mid  _ {U _ {i}  } $
 +
is trivial for all $  i $.
  
Very often in the literature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440117.png" /> classifying space of a group is defined as the base space of a totally acyclic principal fibre bundle. One may as well (as is done above) consider the class of locally trivial fibre bundles with structure group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440118.png" />, and define a classifying space as the base space of a universal locally trivial bundle. In principle the classifying space thus defined depends then also on the special fibre type. But as it is proved in the literature (up to homotopy equivalence) the classifying spaces are independent of the fibre type.
+
Very often in the literature $  the $
 +
classifying space of a group is defined as the base space of a totally acyclic principal fibre bundle. One may as well (as is done above) consider the class of locally trivial fibre bundles with structure group $  G $,  
 +
and define a classifying space as the base space of a universal locally trivial bundle. In principle the classifying space thus defined depends then also on the special fibre type. But as it is proved in the literature (up to homotopy equivalence) the classifying spaces are independent of the fibre type.
  
For more on such classifying spaces as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440119.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440120.png" /> cf. [[#References|[a2]]]. The elements of the cohomology rings of classifying spaces such as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440121.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440122.png" /> define characteristic classes (cf. [[Characteristic class|Characteristic class]]) by assigning e.g. for a given element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440123.png" /> to an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440124.png" />-dimensional complex vector bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440125.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440126.png" /> the cohomology element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440127.png" /> where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440128.png" /> is the mapping (unique up to homotopy) such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440129.png" /> is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440130.png" /> (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440131.png" /> is the universal complex vector bundle over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440132.png" />); <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440133.png" /> is called the characteristic cohomology class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440134.png" /> determined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022440/c022440135.png" />.
+
For more on such classifying spaces as $  \mathop{\rm BPl} _ {n} $
 +
and $  BTop _ {n} $
 +
cf. [[#References|[a2]]]. The elements of the cohomology rings of classifying spaces such as $  \mathop{\rm BSO} _ {n} $,
 +
$  \mathop{\rm BU} _ {n} ,\dots $
 +
define characteristic classes (cf. [[Characteristic class|Characteristic class]]) by assigning e.g. for a given element c \in H  ^ {*} (  \mathop{\rm BU} _ {n} ) $
 +
to an $  n $-
 +
dimensional complex vector bundle $  \xi $
 +
over $  X $
 +
the cohomology element $  c ( \xi ) = f _  \xi  ^ { * } ( c) \in H  ^ {*} ( X) $
 +
where $  f _  \xi  : X \rightarrow  \mathop{\rm BU} _ {n} $
 +
is the mapping (unique up to homotopy) such that $  f _  \xi  ^ { ! } \xi _ {n}  ^ {U} $
 +
is isomorphic to $  \xi $(
 +
where $  \xi _ {n}  ^ {U} $
 +
is the universal complex vector bundle over $  \mathop{\rm BU} _ {n} $);  
 +
c ( \xi ) $
 +
is called the characteristic cohomology class of $  \xi $
 +
determined by c $.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.W. Milnor,   J.D. Stasheff,   "Characteristic classes" , Princeton Univ. Press (1974)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J. Madsen,   R.J. Milgram,   "The classifying spaces for surgery and cobordism of manifolds" , Princeton Univ. Press (1979)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.W. Milnor, J.D. Stasheff, "Characteristic classes" , Princeton Univ. Press (1974) {{MR|0440554}} {{ZBL|0298.57008}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J. Madsen, R.J. Milgram, "The classifying spaces for surgery and cobordism of manifolds" , Princeton Univ. Press (1979) {{MR|0548575}} {{ZBL|0446.57002}} </TD></TR></table>

Latest revision as of 20:39, 23 December 2023


The base $ B _ {0} $ of a universal fibre bundle $ \xi = ( E _ {0} , p _ {0} , B _ {0} ) $.

The universality of the bundle $ \xi $ is to be understood in the following sense. Let $ k _ {G} ( X) $ be the set of equivalence classes (with respect to a notion of isomorphism (covering the identity mapping of $ X $)) of locally trivial bundles over the $ \mathop{\rm CW} $- complex $ X $ with structure group $ G $. If $ \xi = ( E, p, B) $ is a locally trivial bundle with structure group $ G $, $ B ^ { \prime } $ is a topological space and $ f, g: B ^ { \prime } \rightarrow B $ are homotopic mappings, then the induced bundles $ f ^ { ! } ( \xi ) $ and $ g ^ {! } ( \xi ) $ over $ B ^ { \prime } $ belong to the same class in $ k _ {G} ( B ^ { \prime } ) $. A locally trivial bundle $ \xi ^ {G} = ( EG, p, BG) $ is now called universal if the mapping $ [ X, BG] \rightarrow k _ {G} ( X) $, $ f \rightarrow f ^ {*} ( \xi ^ {G} ) $, is one-to-one (and onto) for any $ X $. In this case, the space $ BG $ is called a classifying space of the group $ G $. A principal bundle with structure group $ G $ is universal (in the class of locally trivial bundles over $ \mathop{\rm CW} $- complexes) if the space of the bundle has trivial homotopy groups.

The most important examples of classifying spaces are $ \mathop{\rm BO} _ {n} $, $ \mathop{\rm BSO} _ {n} $, $ \mathop{\rm BU} _ {n} $, $ \mathop{\rm BSU} _ {n} $ for the respective groups $ \textrm{ O } _ {n} $, $ \mathop{\rm SO} _ {n} $, $ \textrm{ U } _ {n} $, $ \mathop{\rm SU} _ {n} $, and are constructed as follows. Let $ G ( n, k) $ be the Grassmann manifold; it is the base of the principal $ \textrm{ O } _ {n} $- bundle with the Stiefel manifold $ V ( n, k) $ as total space. The natural imbeddings $ G ( n, k) \subset G ( n, k + 1) $ and $ V ( n, k) \subset V ( n, k + 1) $ allow one to form the unions $ G ( n) = \cup _ {k = 1 } ^ \infty G ( n, k) $ and $ V ( n) = \cup _ {k = 1 } ^ \infty V ( n, k) $. The bundle $ ( V ( n), p _ {0} , G ( n)) $ is universal and $ G ( n) = \mathop{\rm BO} _ {n} $ is a classifying space for the group $ \textrm{ O } _ {n} $( $ \pi _ {i} V ( n, k) = 0 $ for $ i < k - 1 $ and $ \pi _ {i} V ( n) = 0 $ for all $ i $). The Grassmann manifold $ \widetilde{G} ( n, k) $( the space of $ n $- dimensional planes with a fixed orientation in $ \mathbf R ^ {n} $) leads in analogous fashion to the classifying space $ \cup _ {k = 1 } ^ \infty \widetilde{G} ( n, k) = \widetilde{G} ( n) = \mathop{\rm BSO} _ {n} $ for the group $ \mathop{\rm SO} _ {n} $. The classifying spaces for the groups $ \mathop{\rm BU} _ {n} $ and $ \mathop{\rm BSU} _ {n} $ are similarly constructed, but with the difference that here complex Grassmann manifolds are considered.

For any $ \textrm{ O } _ {n} $- bundle $ ( E, p, B) $( where $ B $ is a $ \mathop{\rm CW} $- complex) there exists a mapping $ f: B \rightarrow G ( n) $ under which the induced bundle over $ B $ is isomorphic to $ ( E, p, B) $. In the case when $ B $ is a smooth $ n $- dimensional manifold and the principal $ \textrm{ O } _ {n} $- bundle $ ( E, p, B) $ is associated with the tangent vector bundle to $ B $, the construction of $ f $ is especially simple: The manifold $ B $ is imbedded in a Euclidean space $ \mathbf R ^ {n + k } $ for sufficiently large $ k $ and $ f ( x) $, $ x \in B $, is taken to coincide with the $ n $- dimensional subspace of $ \mathbf R ^ {n + k } $ obtained by a displacement of the tangent space to $ B $ at $ x $. The Grassmann manifolds provide a convenient method of constructing classifying spaces for vector bundles. There are also constructions enabling one to construct classifying spaces functorially for any topological group. The most commonly used is the Milnor construction $ \omega _ {G} $( see Principal fibre bundle) for which $ \omega _ {G} $ is universal in the wider category of all numerable $ G $- bundles over an arbitrary topological space.

Classifying spaces play an important role for spherical bundles $ BG _ {n} $ over a $ \mathop{\rm CW} $- complex $ B $; the Milnor construction is not suitable for the construction of the spaces $ BG _ {n} $( and of $ BSG _ {n} $ for orientable spherical bundles) since the set of homotopy equivalences $ S ^ {n} \rightarrow S ^ {n} $ is not a group but an $ H $- space. An explicit construction of these spaces is given in [2]. There also exist classifying spaces $ \mathop{\rm BPl} _ {n} $ and $ \mathop{\rm BTop} _ {n} $ for piecewise-linear and topological microbundles.

There is a natural mapping $ \mathop{\rm BO} _ {n} \rightarrow \mathop{\rm BO} _ {n + 1 } $ corresponding to the addition of a one-dimensional trivial bundle to a vector bundle. The mapping can be regarded as an imbedding, so that it makes sense to consider the union $ \mathop{\rm BO} = \cup _ {n = 1 } ^ \infty \mathop{\rm BO} _ {n} $ in the inductive limit topology. The spaces $ \mathop{\rm BSO} $, $ \mathop{\rm BU} $, $ \mathop{\rm BSU} $, $ BG $, $ BSG $, $ \mathop{\rm BPl} $, $ \mathop{\rm BTop} $, etc., are constructed in a completely analogous fashion. These are classifying spaces for stable equivalence classes of bundles given over connected finite $ \mathop{\rm CW} $- complexes. All these spaces have $ H $- space structures coming from the operation of Whitney sums of fibre bundles.

The term "classifying space" is not used solely in connection with fibre bundles. Sometimes classifying space refers to the representing space (object) for an arbitrary representable functor $ T: H \rightarrow \mathop{\rm Ens} $ of the homotopy category into the category of sets. An example of such a classifying space is the space $ B \Gamma _ {q} $ which classifies in some sense foliations (cf. Foliation) of codimension $ q $ on a manifold, or, more generally, Haefliger $ q $- structures on an arbitrary topological space.

References

[1] D. Husemoller, "Fibre bundles" , McGraw-Hill (1966) MR0229247 Zbl 0144.44804
[2] J.M. Boardman, R.M. Vogt, "Homotopy invariant algebraic structures on topological spaces" , Springer (1973) MR0420609 MR0420610 Zbl 0285.55012

Comments

Two vector bundles $ \xi _ {1} , \xi _ {2} $ are stably equivalent (with respect to some notion of isomorphism) if there are trivial bundles $ \gamma _ {1} , \gamma _ {2} $ such that the Whitney sums (direct sums) $ \xi _ {1} \oplus \gamma _ {1} $ and $ \xi _ {2} \oplus \gamma _ {2} $ are isomorphic in the chosen sense.

An open covering $ \{ U _ {i} \} $ of a topological space is numerable if there exists a locally finite partition of unity $ \{ u _ {i} \} $ such that $ u _ {i} ^ {- 1} (( 0, 1]) \subset U _ {i} $ for all $ i $. A $ G $- bundle $ \xi $ over $ B $ is numerable if there is a numerable covering $ \{ U _ {i} \} $ such that $ G\mid _ {U _ {i} } $ is trivial for all $ i $.

Very often in the literature $ the $ classifying space of a group is defined as the base space of a totally acyclic principal fibre bundle. One may as well (as is done above) consider the class of locally trivial fibre bundles with structure group $ G $, and define a classifying space as the base space of a universal locally trivial bundle. In principle the classifying space thus defined depends then also on the special fibre type. But as it is proved in the literature (up to homotopy equivalence) the classifying spaces are independent of the fibre type.

For more on such classifying spaces as $ \mathop{\rm BPl} _ {n} $ and $ BTop _ {n} $ cf. [a2]. The elements of the cohomology rings of classifying spaces such as $ \mathop{\rm BSO} _ {n} $, $ \mathop{\rm BU} _ {n} ,\dots $ define characteristic classes (cf. Characteristic class) by assigning e.g. for a given element $ c \in H ^ {*} ( \mathop{\rm BU} _ {n} ) $ to an $ n $- dimensional complex vector bundle $ \xi $ over $ X $ the cohomology element $ c ( \xi ) = f _ \xi ^ { * } ( c) \in H ^ {*} ( X) $ where $ f _ \xi : X \rightarrow \mathop{\rm BU} _ {n} $ is the mapping (unique up to homotopy) such that $ f _ \xi ^ { ! } \xi _ {n} ^ {U} $ is isomorphic to $ \xi $( where $ \xi _ {n} ^ {U} $ is the universal complex vector bundle over $ \mathop{\rm BU} _ {n} $); $ c ( \xi ) $ is called the characteristic cohomology class of $ \xi $ determined by $ c $.

References

[a1] J.W. Milnor, J.D. Stasheff, "Characteristic classes" , Princeton Univ. Press (1974) MR0440554 Zbl 0298.57008
[a2] J. Madsen, R.J. Milgram, "The classifying spaces for surgery and cobordism of manifolds" , Princeton Univ. Press (1979) MR0548575 Zbl 0446.57002
How to Cite This Entry:
Classifying space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Classifying_space&oldid=17971
This article was adapted from an original article by A.F. Kharshiladze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article