Namespaces
Variants
Actions

Difference between revisions of "Szpiro's conjecture"

From Encyclopedia of Mathematics
Jump to: navigation, search
(MSC|11Gxx)
m (→‎References: isbn link)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
{{TEX|done}}
 
{{MSC|11Gxx}}
 
{{MSC|11Gxx}}
  
Line 14: Line 15:
  
 
==References==
 
==References==
* Lang, Serge; ''Survey of Diophantine geometry'' (1997), p. 51, Springer-Verlag, {{ZBL|0869.11051}} ISBN 3-540-61223-8  
+
* Lang, Serge; ''Survey of Diophantine geometry'' (1997), p. 51, Springer-Verlag, {{ZBL|0869.11051}} {{ISBN|3-540-61223-8}}
* Szpiro, L.; ''Seminaire sur les pinceaux des courbes de genre au moins deux'',   Astérisque, '''86''' (1981), pp. 44-78, {{ZBL|0463.00009}}   
+
* Szpiro, L.; ''Séminaire sur les pinceaux des courbes de genre au moins deux'', Astérisque, '''86''' (1981), pp. 44-78, {{ZBL|0463.00009}}   
 
* Szpiro, L.; ''Présentation de la théorie d'Arakelov'', Contemp. Math.,  '''67'''  (1987), pp. 279-293, {{ZBL|0634.14012}}
 
* Szpiro, L.; ''Présentation de la théorie d'Arakelov'', Contemp. Math.,  '''67'''  (1987), pp. 279-293, {{ZBL|0634.14012}}

Latest revision as of 09:03, 26 November 2023

2020 Mathematics Subject Classification: Primary: 11Gxx [MSN][ZBL]


A conjectural relationship between the conductor and the discriminant of an elliptic curve. In a general form, it is equivalent to the well-known ABC conjecture. It is named for Lucien Szpiro who formulated it in the 1980s.

The conjecture states that: given $\epsilon > 0$, there exists a constant $C(\epsilon)$ such that for any elliptic curve $E$ defined over $\mathbb{Q}$ with minimal discriminant $\Delta$ and conductor $f$, we have $$ \vert\Delta\vert \leq C(\varepsilon ) \cdot f^{6+\varepsilon } \ . $$ The modified Szpiro conjecture states that: given $\epsilon > 0$, there exists a constant $C(\epsilon)$ such that for any elliptic curve $E$ defined over $\mathbb{Q}$ with invariants $c_4,c_6$ and conductor $f$, we have $$ \max\{\vert c_4\vert^3,\vert c_6\vert^2\} \leq C(\varepsilon )\cdot f^{6+\varepsilon } \ . $$

References

  • Lang, Serge; Survey of Diophantine geometry (1997), p. 51, Springer-Verlag, Zbl 0869.11051 ISBN 3-540-61223-8
  • Szpiro, L.; Séminaire sur les pinceaux des courbes de genre au moins deux, Astérisque, 86 (1981), pp. 44-78, Zbl 0463.00009
  • Szpiro, L.; Présentation de la théorie d'Arakelov, Contemp. Math., 67 (1987), pp. 279-293, Zbl 0634.14012
How to Cite This Entry:
Szpiro's conjecture. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Szpiro%27s_conjecture&oldid=30401