Difference between revisions of "Lattice with complements"
m (→References: expand bibliodata) |
(→References: isbn link) |
||
(One intermediate revision by one other user not shown) | |||
Line 3: | Line 3: | ||
''complemented lattice'' | ''complemented lattice'' | ||
− | A [[ | + | A [[lattice]] $L$ with a zero 0 and a unit 1 in which for any element $a$ there is an element $b$ (called a ''complement'' of the element $a$) such that $a\lor b=1$ and $a\land b=0$. If for any $a,b\in L$ with $a\leq b$ the [[interval]] $[a,b]$ is a complemented lattice, then $L$ is called a relatively complemented lattice. Each complemented [[modular lattice]] is a relatively complemented lattice. A lattice $L$ with a zero 0 is called: |
+ | |||
+ | a) a ''partially complemented'' lattice if each of its intervals of the form $[0,a]$, $a\in L$, is a complemented lattice; | ||
+ | |||
+ | b) a ''weakly complemented'' lattice if for any $a,b\in L$ with $b\nleq a$ there is an element $c\in L$ such that $a\land c=0$ and $b\land c\neq0$; | ||
+ | |||
+ | c) a ''semi-complemented'' lattice if for any $a\in L$, $a\neq1$, there is an element $b\in L$, $b\neq0$, such that $a\land b=0$; | ||
+ | |||
+ | d) a ''pseudo-complemented'' lattice if for any $a\in L$ there is an element $a^*$ such that $a\land x=0$ if and only if $x\leq a^*$; and | ||
+ | |||
+ | e) a ''quasi-complemented'' lattice if for any $x\in L$ there is an element $y\in L$ such that $x\land y=0$ and $x\lor y$ is a dense element. | ||
+ | |||
+ | Ortho-complemented lattices also play an important role (see [[Orthomodular lattice]]). See [[#References|[4]]] for the relation between the various types of complements in lattices. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> G. Birkhoff, "Lattice theory" , ''Colloq. Publ.'' , '''25''' , Amer. Math. Soc. (1973)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L.A. Skornyakov, "Elements of lattice theory" , A. Hilger (1977) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.A. Skornyakov, "Complemented modular lattices and regular rings" , Oliver & Boyd (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> P.A. Grillet, J.C. Varlet, "Complementedness conditions in lattices" ''Bull Soc. Roy. Sci. Liège'' , '''36''' : 11–12 (1967) pp. 628–642</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> G. Birkhoff, "Lattice theory" , ''Colloq. Publ.'' , '''25''' , Amer. Math. Soc. (1973)</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> L.A. Skornyakov, "Elements of lattice theory" , A. Hilger (1977) (Translated from Russian)</TD></TR> | ||
+ | <TR><TD valign="top">[3]</TD> <TD valign="top"> L.A. Skornyakov, "Complemented modular lattices and regular rings" , Oliver & Boyd (1964) (Translated from Russian)</TD></TR> | ||
+ | <TR><TD valign="top">[4]</TD> <TD valign="top"> P.A. Grillet, J.C. Varlet, "Complementedness conditions in lattices" ''Bull Soc. Roy. Sci. Liège'' , '''36''' : 11–12 (1967) pp. 628–642</TD></TR> | ||
+ | </table> | ||
Line 13: | Line 30: | ||
In a [[distributive lattice]], each element has at most one complement; conversely, a lattice in which each element has at most one relative complement in each interval in which it lies must be distributive. | In a [[distributive lattice]], each element has at most one complement; conversely, a lattice in which each element has at most one relative complement in each interval in which it lies must be distributive. | ||
− | A [[Boolean lattice]] is a complemented distributive lattice. | + | A ''[[Boolean lattice]]'' is a complemented distributive lattice. |
====References==== | ====References==== | ||
Line 19: | Line 36: | ||
<TR><TD valign="top">[a1]</TD> <TD valign="top"> L. Beran, "Orthomodular lattices" , Reidel (1985)</TD></TR> | <TR><TD valign="top">[a1]</TD> <TD valign="top"> L. Beran, "Orthomodular lattices" , Reidel (1985)</TD></TR> | ||
<TR><TD valign="top">[a2]</TD> <TD valign="top"> G. Grätzer, "Lattice theory" , Freeman (1971)</TD></TR> | <TR><TD valign="top">[a2]</TD> <TD valign="top"> G. Grätzer, "Lattice theory" , Freeman (1971)</TD></TR> | ||
− | <TR><TD valign="top">[a3]</TD> <TD valign="top"> M.L. Dubreil-Jacotin, L. Lesieur, R. Croiset, "Leçons sur la théorie des | + | <TR><TD valign="top">[a3]</TD> <TD valign="top"> M.L. Dubreil-Jacotin, L. Lesieur, R. Croiset, "Leçons sur la théorie des treillis" , Gauthier-Villars (1953)</TD></TR> |
− | + | <TR><TD valign="top">[b1]</TD> <TD valign="top"> B. A. Davey, H. A. Priestley, ''Introduction to lattices and order'', 2nd ed. Cambridge University Press (2002) {{ISBN|978-0-521-78451-1}} {{ZBL|1002.06001}}</TD></TR> | |
− | |||
− | <TR><TD valign="top">[b1]</TD> <TD valign="top"> B. A. Davey, H. A. Priestley, ''Introduction to lattices and order'', 2nd ed. Cambridge University Press (2002) ISBN 978-0-521-78451-1 {{ZBL|1002.06001}}</TD></TR> | ||
</table> | </table> |
Latest revision as of 08:09, 26 November 2023
2020 Mathematics Subject Classification: Primary: 06C15 [MSN][ZBL]
complemented lattice
A lattice $L$ with a zero 0 and a unit 1 in which for any element $a$ there is an element $b$ (called a complement of the element $a$) such that $a\lor b=1$ and $a\land b=0$. If for any $a,b\in L$ with $a\leq b$ the interval $[a,b]$ is a complemented lattice, then $L$ is called a relatively complemented lattice. Each complemented modular lattice is a relatively complemented lattice. A lattice $L$ with a zero 0 is called:
a) a partially complemented lattice if each of its intervals of the form $[0,a]$, $a\in L$, is a complemented lattice;
b) a weakly complemented lattice if for any $a,b\in L$ with $b\nleq a$ there is an element $c\in L$ such that $a\land c=0$ and $b\land c\neq0$;
c) a semi-complemented lattice if for any $a\in L$, $a\neq1$, there is an element $b\in L$, $b\neq0$, such that $a\land b=0$;
d) a pseudo-complemented lattice if for any $a\in L$ there is an element $a^*$ such that $a\land x=0$ if and only if $x\leq a^*$; and
e) a quasi-complemented lattice if for any $x\in L$ there is an element $y\in L$ such that $x\land y=0$ and $x\lor y$ is a dense element.
Ortho-complemented lattices also play an important role (see Orthomodular lattice). See [4] for the relation between the various types of complements in lattices.
References
[1] | G. Birkhoff, "Lattice theory" , Colloq. Publ. , 25 , Amer. Math. Soc. (1973) |
[2] | L.A. Skornyakov, "Elements of lattice theory" , A. Hilger (1977) (Translated from Russian) |
[3] | L.A. Skornyakov, "Complemented modular lattices and regular rings" , Oliver & Boyd (1964) (Translated from Russian) |
[4] | P.A. Grillet, J.C. Varlet, "Complementedness conditions in lattices" Bull Soc. Roy. Sci. Liège , 36 : 11–12 (1967) pp. 628–642 |
Comments
In a distributive lattice, each element has at most one complement; conversely, a lattice in which each element has at most one relative complement in each interval in which it lies must be distributive.
A Boolean lattice is a complemented distributive lattice.
References
[a1] | L. Beran, "Orthomodular lattices" , Reidel (1985) |
[a2] | G. Grätzer, "Lattice theory" , Freeman (1971) |
[a3] | M.L. Dubreil-Jacotin, L. Lesieur, R. Croiset, "Leçons sur la théorie des treillis" , Gauthier-Villars (1953) |
[b1] | B. A. Davey, H. A. Priestley, Introduction to lattices and order, 2nd ed. Cambridge University Press (2002) ISBN 978-0-521-78451-1 Zbl 1002.06001 |
Lattice with complements. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lattice_with_complements&oldid=37424