Namespaces
Variants
Actions

Difference between revisions of "Carmichael function"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Start article: Carmichael function)
 
(→‎References: isbn link)
 
Line 15: Line 15:
  
 
==References==
 
==References==
* Eric Bach, Jeffrey O. Shallit, ''Algorithmic Number Theory: Efficient algorithms, Volume 1'', MIT Press (1996) ISBN 0262024055
+
* Eric Bach, Jeffrey O. Shallit, ''Algorithmic Number Theory: Efficient algorithms, Volume 1'', MIT Press (1996) {{ISBN|0262024055}}

Latest revision as of 16:57, 25 November 2023

2020 Mathematics Subject Classification: Primary: 11A25 [MSN][ZBL]

of a positive integer

The exponent of the multiplicative group of integers modulo n, denoted \lambda(n); the least positive integer \lambda such that a^\lambda \equiv 1 \pmod n for all integers a coprime to n. It is equal to the least common multiple of its values on the prime power factors of n: \lambda(n) = \mathrm{lcm}\{\lambda(p_i^{a_i})\}\ \ \text{where}\ n = \prod_i p_i^{a_i} \ .

Since the multiplicative group modulo an odd prime power p^a is cyclic, in these cases we have \lambda(p^a) = \phi(p^a) = p^{a-1}(p-1) where \phi denotes the Euler totient function. For powers of 2, we have \lambda(2) = 1, \lambda(4)= 2 and \lambda(2^a) = 2^{a-2} for a \ge 3.

The order of the multiplicative group modulo n is \phi(n), so by Lagrange's theorem in group theory, \lambda(n) divides \phi(n).

A Carmichael number is a composite number with the property that \lambda(n) divides n-1.

References

  • Eric Bach, Jeffrey O. Shallit, Algorithmic Number Theory: Efficient algorithms, Volume 1, MIT Press (1996) ISBN 0262024055
How to Cite This Entry:
Carmichael function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Carmichael_function&oldid=35703