Difference between revisions of "Integral part"
m (typo) |
m (gather refs) |
||
(One intermediate revision by one other user not shown) | |||
Line 2: | Line 2: | ||
''entier, integer part of a (real) number $x$'' | ''entier, integer part of a (real) number $x$'' | ||
− | The largest integer not exceeding $x$. It is denoted by $[x]$ or by $E(x)$. It follows from the definition of an integer part that $[x]\leq x<[x]+1$. If $x$ is an integer, $[x]=x$. Examples: $[3.6]=3$; $[1/3]=0$, $[-13/3]=-5$. The integral part is used in the factorization of, for example, the number $n!=1\ | + | The largest integer not exceeding $x$. It is denoted by $[x]$ or by $E(x)$. It follows from the definition of an integer part that $[x]\leq x<[x]+1$. If $x$ is an integer, $[x]=x$. Examples: $[3.6]=3$; $[1/3]=0$, $[-13/3]=-5$. The integral part is used in the factorization of, for example, the number $n!=1\cdots n$, viz. |
$$n!=\prod_{p\leq n}p^{\alpha(p)},$$ | $$n!=\prod_{p\leq n}p^{\alpha(p)},$$ | ||
Line 10: | Line 10: | ||
$$\alpha(p)=\left[\frac np\right]+\left[\frac{n}{p^2}\right]+\mathinner{\ldotp\ldotp\ldotp\ldotp}$$ | $$\alpha(p)=\left[\frac np\right]+\left[\frac{n}{p^2}\right]+\mathinner{\ldotp\ldotp\ldotp\ldotp}$$ | ||
− | The function $y=[x]$ of the variable $x$ is piecewise | + | The function $y=[x]$ of the variable $x$ is piecewise constant (a [[step function]]) with jumps at the integers. Using the integral part one defines the [[fractional part of a number]] $x$, denoted by the symbol $\{x\}$ and given by |
$$x-[x];\quad0\leq\{x\}<1.$$ | $$x-[x];\quad0\leq\{x\}<1.$$ | ||
The function $y=\{x\}$ is a periodic and piecewise continuous. | The function $y=\{x\}$ is a periodic and piecewise continuous. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
Line 26: | Line 21: | ||
====References==== | ====References==== | ||
<table> | <table> | ||
− | <TR><TD valign="top">[a1]</TD> <TD valign="top"> Graham, Ronald L.; Knuth, Donald E.; Patashnik, Oren "Concrete mathematics: a foundation for computer science" (2nd ed.) Addison-Wesley (1994) ISBN 0201558025 {{ZBL|0836.00001}} | + | <TR><TD valign="top">[1]</TD> <TD valign="top"> I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian) {{ZBL|0057.28201}}</TD></TR> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> Graham, Ronald L.; Knuth, Donald E.; Patashnik, Oren "Concrete mathematics: a foundation for computer science" (2nd ed.) Addison-Wesley (1994) {{ISBN|0201558025}} {{ZBL|0836.00001}} | ||
</TD></TR> | </TD></TR> | ||
</table> | </table> |
Latest revision as of 16:50, 23 November 2023
entier, integer part of a (real) number $x$
The largest integer not exceeding $x$. It is denoted by $[x]$ or by $E(x)$. It follows from the definition of an integer part that $[x]\leq x<[x]+1$. If $x$ is an integer, $[x]=x$. Examples: $[3.6]=3$; $[1/3]=0$, $[-13/3]=-5$. The integral part is used in the factorization of, for example, the number $n!=1\cdots n$, viz.
$$n!=\prod_{p\leq n}p^{\alpha(p)},$$
where the product consists of all primes $p$ not exceeding $n$, and
$$\alpha(p)=\left[\frac np\right]+\left[\frac{n}{p^2}\right]+\mathinner{\ldotp\ldotp\ldotp\ldotp}$$
The function $y=[x]$ of the variable $x$ is piecewise constant (a step function) with jumps at the integers. Using the integral part one defines the fractional part of a number $x$, denoted by the symbol $\{x\}$ and given by
$$x-[x];\quad0\leq\{x\}<1.$$
The function $y=\{x\}$ is a periodic and piecewise continuous.
Comments
The notation $\lfloor x \rfloor$ ("floor") is also in use. The smallest integer not less than $x$ is denoted $\lceil x \rceil$ ("ceiling").
References
[1] | I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian) Zbl 0057.28201 |
[a1] | Graham, Ronald L.; Knuth, Donald E.; Patashnik, Oren "Concrete mathematics: a foundation for computer science" (2nd ed.) Addison-Wesley (1994) ISBN 0201558025 Zbl 0836.00001 |
Integral part. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Integral_part&oldid=40190