Difference between revisions of "Legendre–Jacobi–Kronecker symbol"
(Start article: Legendre–Jacobi–Kronecker symbol) |
m (→References: isbn link) |
||
Line 16: | Line 16: | ||
==References== | ==References== | ||
− | * Henri Cohen, ''A Course in Computational Algebraic Number Theory'', Graduate Texts in Mathematics '''138''' Springer (1993) ISBN 3-540-55640-0 | + | * Henri Cohen, ''A Course in Computational Algebraic Number Theory'', Graduate Texts in Mathematics '''138''' Springer (1993) {{ISBN|3-540-55640-0}} |
Latest revision as of 16:43, 23 November 2023
2020 Mathematics Subject Classification: Primary: 11A15 [MSN][ZBL]
Kronecker symbol
A generalisation of the Jacobi symbol $\left(\frac{a}{b}\right)$ to arbitrary integers $a$, $b$. If $b=0$, it is defined as 1 if $a = \pm 1$ and 0 otherwise. For $b \neq 0$, write $b$ as a product $\prod_i p_i$ where the $p_i$ are primes, not necessarily distinct, or $-1$. Then $$ \left({\frac{a}{b}}\right) = \prod_i \left({\frac{a}{p_i}}\right) $$ where $\left(\frac{a}{p}\right)$ is the Legendre symbol when $p$ is an odd prime; $$ \left({\frac{a}{2}}\right) = \begin{cases}0,&a\ \text{even},\\(-1)^{(a^2-1)/8},&a\ \text{odd}.\end{cases} $$ $$ \left({\frac{a}{-1}}\right) = \begin{cases}1,&a \ge 0,\\(-1),&a < 0.\end{cases} $$
References
- Henri Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics 138 Springer (1993) ISBN 3-540-55640-0
Legendre–Jacobi–Kronecker symbol. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Legendre%E2%80%93Jacobi%E2%80%93Kronecker_symbol&oldid=35654