Difference between revisions of "Exponential law for sets"
(Start article: Exponential law for sets) |
(→References: isbn link) |
||
(3 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
− | The correspondence between the sets $A^{B \times C}$ and $(A^B)^C$, where $X^Y$ denotes the set of all maps from the set $Y$ to the set $X$. Given $f \in A^{B \times C}$, that is $ | + | {{TEX|done}}{{MSC|03E20}} |
+ | |||
+ | The correspondence between the sets $A^{B \times C}$ and $(A^B)^C$, where $X^Y$ denotes the set of all maps from the set $Y$ to the set $X$. Given $f \in A^{B \times C}$, that is, a [[pairing]] $f : B \times C \rightarrow A$, and given $c \in C$, let $f_c$ denote the map $f_c : B \rightarrow A$ by $f_c : b \mapsto f(b,c)$. Then $c \mapsto f_c$ defines a map from $A^{B \times C} \rightarrow (A^B)^C$. In the opposite direction, let $G \in (A^B)^C$. Given $b \in B$ and $c \in C$, define $g(b,c)$ to be $G(c)$ applied to $b$. Then $G \mapsto g$ defines a map from $(A^B)^C \rightarrow A^{B \times C}$. These two correspondences are mutually inverse. | ||
In computer science, this operation is known as "Currying" after Haskell Curry (1900-1982). | In computer science, this operation is known as "Currying" after Haskell Curry (1900-1982). | ||
Line 10: | Line 12: | ||
$$ | $$ | ||
− | There are further correspondences relating the sets $A^{B \coprod C}$ and $A^B \times A^C$ and the sets $(A \times B)^C$ and $A^C \times B^C$, corresponding to the formulae in cardinal arithmetic $\mathfrak{a}^{\mathfrak{b} + \mathfrak{c}} = \mathfrak{a}^{\mathfrak{b}}\mathfrak{a}^{\mathfrak{c}}$ and $(\mathfrak{a} \mathfrak{b})^{\mathfrak{c}} = \mathfrak{a}^{\mathfrak{c}} \mathfrak{ | + | There are further correspondences relating the sets $A^{B \coprod C}$ and $A^B \times A^C$ and the sets $(A \times B)^C$ and $A^C \times B^C$, corresponding to the formulae in cardinal arithmetic $\mathfrak{a}^{\mathfrak{b} + \mathfrak{c}} = \mathfrak{a}^{\mathfrak{b}}\mathfrak{a}^{\mathfrak{c}}$ and $(\mathfrak{a} \mathfrak{b})^{\mathfrak{c}} = \mathfrak{a}^{\mathfrak{c}} \mathfrak{b}^{\mathfrak{c}}$. |
====References==== | ====References==== | ||
− | * Benjamin C. Pierce, ''Basic Category Theory for Computer Scientists'', MIT Press (1991) ISBN 0262660717 | + | * Benjamin C. Pierce, ''Basic Category Theory for Computer Scientists'', MIT Press (1991) {{ISBN|0262660717}} |
− | * Paul Taylor, ''Practical Foundations of Mathematics'', Cambridge Studies in Advanced Mathematics '''59''', Cambridge University Press (1999) ISBN 0-521-63107-6 | + | * Paul Taylor, ''Practical Foundations of Mathematics'', Cambridge Studies in Advanced Mathematics '''59''', Cambridge University Press (1999) {{ISBN|0-521-63107-6}} |
Latest revision as of 11:59, 23 November 2023
2020 Mathematics Subject Classification: Primary: 03E20 [MSN][ZBL]
The correspondence between the sets $A^{B \times C}$ and $(A^B)^C$, where $X^Y$ denotes the set of all maps from the set $Y$ to the set $X$. Given $f \in A^{B \times C}$, that is, a pairing $f : B \times C \rightarrow A$, and given $c \in C$, let $f_c$ denote the map $f_c : B \rightarrow A$ by $f_c : b \mapsto f(b,c)$. Then $c \mapsto f_c$ defines a map from $A^{B \times C} \rightarrow (A^B)^C$. In the opposite direction, let $G \in (A^B)^C$. Given $b \in B$ and $c \in C$, define $g(b,c)$ to be $G(c)$ applied to $b$. Then $G \mapsto g$ defines a map from $(A^B)^C \rightarrow A^{B \times C}$. These two correspondences are mutually inverse.
In computer science, this operation is known as "Currying" after Haskell Curry (1900-1982).
In category-theoretic terms, the exponential law makes the category of sets a Cartesian-closed category.
In cardinal arithmetic, this corresponds to the formula $$ \mathfrak{a}^{\mathfrak{b}\mathfrak{c}} = (\mathfrak{a}^{\mathfrak{b}})^{\mathfrak{c}} \ . $$
There are further correspondences relating the sets $A^{B \coprod C}$ and $A^B \times A^C$ and the sets $(A \times B)^C$ and $A^C \times B^C$, corresponding to the formulae in cardinal arithmetic $\mathfrak{a}^{\mathfrak{b} + \mathfrak{c}} = \mathfrak{a}^{\mathfrak{b}}\mathfrak{a}^{\mathfrak{c}}$ and $(\mathfrak{a} \mathfrak{b})^{\mathfrak{c}} = \mathfrak{a}^{\mathfrak{c}} \mathfrak{b}^{\mathfrak{c}}$.
References
- Benjamin C. Pierce, Basic Category Theory for Computer Scientists, MIT Press (1991) ISBN 0262660717
- Paul Taylor, Practical Foundations of Mathematics, Cambridge Studies in Advanced Mathematics 59, Cambridge University Press (1999) ISBN 0-521-63107-6
Exponential law for sets. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Exponential_law_for_sets&oldid=35710