Namespaces
Variants
Actions

Difference between revisions of "Opposite ring"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Start article: Opposite ring)
 
(→‎References: isbn link)
 
Line 6: Line 6:
  
 
====References====
 
====References====
* Igor R. Shafarevich, tr. M. Reid, ''Basic Notions of Algebra'', Springer (2006) ISBN 3-540-26474-4. p.67
+
* Igor R. Shafarevich, tr. M. Reid, ''Basic Notions of Algebra'', Springer (2006) {{ISBN|3-540-26474-4}}. p.67

Latest revision as of 11:57, 23 November 2023

2020 Mathematics Subject Classification: Primary: 16-XX [MSN][ZBL]

of a ring $R$

The ring $R^{\mathrm{op}}$ having the same additive group as $R$ but with multiplication $\circ$ defined by $x \circ y = y \cdot x$ where $\cdot$ is multiplication in $R$.

References

  • Igor R. Shafarevich, tr. M. Reid, Basic Notions of Algebra, Springer (2006) ISBN 3-540-26474-4. p.67
How to Cite This Entry:
Opposite ring. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Opposite_ring&oldid=35150