Namespaces
Variants
Actions

Difference between revisions of "Lee distance"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Start article: Lee distance)
 
(→‎References: isbn link)
 
(One intermediate revision by one other user not shown)
Line 3: Line 3:
 
A metric on words over an alphabet $A = \{ a_1, \ldots, a_m \}$ where a single error is changing a letter one place in cyclic order.  If the alphabet is identified with $\mathbf{Z}_m = \{0, \ldots, m-1 \}$ then the Lee distance between $x, y \in \mathbf{Z}_m^n$ is
 
A metric on words over an alphabet $A = \{ a_1, \ldots, a_m \}$ where a single error is changing a letter one place in cyclic order.  If the alphabet is identified with $\mathbf{Z}_m = \{0, \ldots, m-1 \}$ then the Lee distance between $x, y \in \mathbf{Z}_m^n$ is
 
$$
 
$$
d_L (x,y) = \sum_{i=1}^n \min\left(|x_i-y_i|, m-|x_i-y_y|\right) \ .
+
d_L (x,y) = \sum_{i=1}^n \min\left(|x_i-y_i|, m-|x_i-y_i|\right) \ .
 
$$
 
$$
  
Line 12: Line 12:
  
 
====References====
 
====References====
* Deza, Michel Marie; Deza, Elena ''Encyclopedia of distances'' (3rd ed.) Springer (2014) ISBN 978-3-662-44341-5 {{ZBL|1301.51001}}
+
* Deza, Michel Marie; Deza, Elena ''Encyclopedia of distances'' (3rd ed.) Springer (2014) {{ISBN|978-3-662-44341-5}} {{ZBL|1301.51001}}
* Roth, Ron ''Introduction to Coding Theory'', Cambridge University Press (2006)  ISBN 0-521-84504-1 {{DOI|10.1017/CBO9780511808968.011}} {{ZBL|1092.94001}}
+
* Roth, Ron ''Introduction to Coding Theory'', Cambridge University Press (2006)  {{ISBN|0-521-84504-1}} {{DOI|10.1017/CBO9780511808968.011}} {{ZBL|1092.94001}}

Latest revision as of 19:39, 17 November 2023


A metric on words over an alphabet $A = \{ a_1, \ldots, a_m \}$ where a single error is changing a letter one place in cyclic order. If the alphabet is identified with $\mathbf{Z}_m = \{0, \ldots, m-1 \}$ then the Lee distance between $x, y \in \mathbf{Z}_m^n$ is $$ d_L (x,y) = \sum_{i=1}^n \min\left(|x_i-y_i|, m-|x_i-y_i|\right) \ . $$

When $m=2$ or $m=3$, Lee distance coincides with Hamming distance. The Lee distance on $\mathbf{Z}_4$ corresponds to Hamming distance on $\mathbf{F}_2^2$ under the Gray map $$ 0 \mapsto 00 \ ,\ \ 1 \mapsto 01 \ ,\ \ 2 \mapsto 11 \ ,\ \ 3 \mapsto 10 \ . $$

References

How to Cite This Entry:
Lee distance. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lee_distance&oldid=38584