Difference between revisions of "Composition (combinatorics)"
(Start article: Composition (combinatorics)) |
m (→References: isbn link) |
||
Line 6: | Line 6: | ||
====References==== | ====References==== | ||
− | * Luoto, Kurt; Mykytiuk, Stefan; van Willigenburg, Stephanie, "An introduction to quasisymmetric Schur functions. Hopf algebras, quasisymmetric functions, and Young composition tableaux", Springer (2013) ISBN 978-1-4614-7299-5 {{ZBL|1277.16027}} | + | * Luoto, Kurt; Mykytiuk, Stefan; van Willigenburg, Stephanie, "An introduction to quasisymmetric Schur functions. Hopf algebras, quasisymmetric functions, and Young composition tableaux", Springer (2013) {{ISBN|978-1-4614-7299-5}} {{ZBL|1277.16027}} |
− | * Riordan, John "Introduction to Combinatorial Analysis", Wiley [1958] Dover (2002) ISBN 0-486-42536-3 {{ZBL|0078.00805}} | + | * Riordan, John "Introduction to Combinatorial Analysis", Wiley [1958] Dover (2002) {{ISBN|0-486-42536-3}} {{ZBL|0078.00805}} |
Latest revision as of 14:20, 12 November 2023
2020 Mathematics Subject Classification: Primary: 05A17 Secondary: 11P81 [MSN][ZBL]
A composition of a natural number $n$ is an expression of $n$ as an ordered sum of positive integers. Thus the compositions of $4$ are $4, 3+1, 1+3, 2+2, 2+1+1, 2+1+1, 1+1+2, 1+1+1+1$. The underlying partition of a composition is the corresponding unordered sum.
A composition on $n$ may be represented as a sequence of $n$ dots separated by bars with no two bars adjacent: thus $4 = 1+2+1$ is represented by $( \bullet \vert \bullet\bullet \vert \bullet )$. The number of compositions of $n$ into $k$ parts is thus $\left({ \begin{array}{cc} n-1 \\ k-1 \end{array} }\right)$ and the total number of compositions of $n$ is $2^{n-1}$
References
- Luoto, Kurt; Mykytiuk, Stefan; van Willigenburg, Stephanie, "An introduction to quasisymmetric Schur functions. Hopf algebras, quasisymmetric functions, and Young composition tableaux", Springer (2013) ISBN 978-1-4614-7299-5 Zbl 1277.16027
- Riordan, John "Introduction to Combinatorial Analysis", Wiley [1958] Dover (2002) ISBN 0-486-42536-3 Zbl 0078.00805
Composition (combinatorics). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Composition_(combinatorics)&oldid=41799