Difference between revisions of "Pre-topological space"
From Encyclopedia of Mathematics
(Redirected page to Closure space) |
m (→References: isbn link) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | {{TEX|done}}{{MSC|54A05}} | |
+ | |||
+ | Let $X$ be a set and $\mathcal{P}X$ the set of subsets of $X$. A pre-topological space structure on $X$ is defined by a ''Čech closure operator'', a mapping $C : \mathcal{P}X \rightarrow \mathcal{P}X$ such that | ||
+ | |||
+ | C1) $C(\emptyset) = \emptyset$; | ||
+ | |||
+ | C2) $A \subseteq C(A)$; | ||
+ | |||
+ | C3) $C(A \cup B) = C(A) \cup C(B)$. | ||
+ | |||
+ | A set $A$ in $X$ is ''closed'' if $A = C(A)$. | ||
+ | |||
+ | A mapping between pre-topological spaces $f : X \rightarrow Y$ is ''continuous'' if $f(C_X(B)) \subseteq C_Y(f(B))$ for any $B \subseteq C$. | ||
+ | |||
+ | If the operator $C$ also satisfies (C4) $C(C(A)) = C(A)$, then $X$ is a [[topological space]] with $C$ as the [[Kuratowski closure operator]]. | ||
+ | |||
+ | ==References== | ||
+ | <table> | ||
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> N.M. Martin, S. Pollard, "Closure spaces and logic" , Kluwer Acad. Publ. (1996)</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> J.L. Kelley, "General topology" , Graduate Texts in Mathematics '''27''' Springer (1975) {{ISBN|0-387-90125-6}} {{ZBL|0306.54002}}</TD></TR> | ||
+ | <TR><TD valign="top">[3]</TD> <TD valign="top"> D. Dikranjan, W. Tholin, "Categorical structures of closure operators" , Kluwer Acad. Publ. (1996)</TD></TR> | ||
+ | <TR><TD valign="top">[4]</TD> <TD valign="top"> Jürgen Jost, "Mathematical Concepts", Springer (2015) {{ISBN|331920436X}}</TD></TR> | ||
+ | </table> |
Latest revision as of 14:04, 12 November 2023
2020 Mathematics Subject Classification: Primary: 54A05 [MSN][ZBL]
Let $X$ be a set and $\mathcal{P}X$ the set of subsets of $X$. A pre-topological space structure on $X$ is defined by a Čech closure operator, a mapping $C : \mathcal{P}X \rightarrow \mathcal{P}X$ such that
C1) $C(\emptyset) = \emptyset$;
C2) $A \subseteq C(A)$;
C3) $C(A \cup B) = C(A) \cup C(B)$.
A set $A$ in $X$ is closed if $A = C(A)$.
A mapping between pre-topological spaces $f : X \rightarrow Y$ is continuous if $f(C_X(B)) \subseteq C_Y(f(B))$ for any $B \subseteq C$.
If the operator $C$ also satisfies (C4) $C(C(A)) = C(A)$, then $X$ is a topological space with $C$ as the Kuratowski closure operator.
References
[1] | N.M. Martin, S. Pollard, "Closure spaces and logic" , Kluwer Acad. Publ. (1996) |
[2] | J.L. Kelley, "General topology" , Graduate Texts in Mathematics 27 Springer (1975) ISBN 0-387-90125-6 Zbl 0306.54002 |
[3] | D. Dikranjan, W. Tholin, "Categorical structures of closure operators" , Kluwer Acad. Publ. (1996) |
[4] | Jürgen Jost, "Mathematical Concepts", Springer (2015) ISBN 331920436X |
How to Cite This Entry:
Pre-topological space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pre-topological_space&oldid=42543
Pre-topological space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pre-topological_space&oldid=42543