Difference between revisions of "Schur determinant lemma"
From Encyclopedia of Mathematics
(Start article) |
m (→References: isbn link) |
||
Line 12: | Line 12: | ||
====References==== | ====References==== | ||
− | * Zhang, Fuzhen (ed.) ''The Schur complement and its applications'', Numerical Methods and Algorithms '''4''' Springer (2005) ISBN 0-387-24271-6 {{ZBL|1075.15002}} | + | * Zhang, Fuzhen (ed.) ''The Schur complement and its applications'', Numerical Methods and Algorithms '''4''' Springer (2005) {{ISBN|0-387-24271-6}} {{ZBL|1075.15002}} |
Latest revision as of 12:24, 12 November 2023
2020 Mathematics Subject Classification: Primary: 15A15 [MSN][ZBL]
A formula for the determinant of a matrix in block form. Let the $2n \times 2n$ matrix $M$ be partitioned into $n \times n$ blocks, $$ M = \left({ \begin{array}{cc} P & Q \\ R & S \end{array} }\right) \ . $$
Then the determinant $$ \det M = \det (PS - RQ) \ . $$
References
- Zhang, Fuzhen (ed.) The Schur complement and its applications, Numerical Methods and Algorithms 4 Springer (2005) ISBN 0-387-24271-6 Zbl 1075.15002
How to Cite This Entry:
Schur determinant lemma. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Schur_determinant_lemma&oldid=36933
Schur determinant lemma. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Schur_determinant_lemma&oldid=36933