Difference between revisions of "Borel transform"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
m (gather refs) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | b0171901.png | ||
+ | $#A+1 = 27 n = 0 | ||
+ | $#C+1 = 27 : ~/encyclopedia/old_files/data/B017/B.0107190 Borel transform | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
An integral transform of the type | An integral transform of the type | ||
− | + | $$ | |
+ | \gamma (t) = \int\limits _ { 0 } ^ \infty | ||
+ | f(z)e ^ {-zt} dz, | ||
+ | $$ | ||
− | where | + | where $ f(z) $ |
+ | is an entire [[function of exponential type]]. The Borel transform is a special case of the [[Laplace transform|Laplace transform]]. The function $ \gamma (t) $ | ||
+ | is called the Borel transform of $ f(z) $. | ||
+ | If | ||
− | + | $$ | |
+ | f(z) = \sum _ { n=0 } ^ \infty | ||
+ | |||
+ | \frac{a _ {n} }{n!} | ||
+ | z ^ {n} , | ||
+ | $$ | ||
then | then | ||
− | + | $$ | |
+ | \gamma (t) = \sum _ { v=0 } ^ \infty | ||
+ | a _ {v} t ^ {-(v+1) } ; | ||
+ | $$ | ||
− | the series converges for | + | the series converges for $ | t | > \sigma $, |
+ | where $ \sigma $ | ||
+ | is the type of $ f(z) $. | ||
+ | Let $ \overline{D}\; $ | ||
+ | be the smallest closed convex set containing all the singularities of the function $ \gamma (t) $; | ||
+ | let | ||
− | + | $$ | |
+ | K( \phi ) = \max _ {z \in \overline{D}\; } \ | ||
+ | \mathop{\rm Re} (ze ^ {-i \phi } ) | ||
+ | $$ | ||
− | be the supporting function of | + | be the supporting function of $ \overline{D}\; $; |
+ | and let $ h ( \phi ) $ | ||
+ | be the growth indicator function of $ f(z) $; | ||
+ | then $ K( \phi ) = h( - \phi ) $. | ||
+ | If in a Borel transform the integration takes place over a ray $ \mathop{\rm arg} z = \phi $, | ||
+ | the corresponding integral will converge in the half-plane $ x \cos \phi + y \sin \phi > K ( - \phi ) $. | ||
+ | Let $ C $ | ||
+ | be a closed contour surrounding $ \overline{D}\; $; | ||
+ | then | ||
− | + | $$ | |
+ | f(z) = | ||
+ | \frac{1}{2 \pi i } | ||
− | + | \int\limits _ { C } \gamma (t) e ^ {zt} dt. | |
+ | $$ | ||
− | + | If additional conditions are imposed, other representations may be deduced from this formula. Thus, consider the class of entire functions $ f(z) $ | |
+ | of exponential type $ \leq \sigma $ | ||
+ | for which | ||
− | + | $$ | |
+ | \int\limits _ {- \infty } ^ \infty | ||
+ | | f(x) | ^ {2} dx < \infty . | ||
+ | $$ | ||
− | + | This class is identical with the class of functions $ f(z) $ | |
+ | that can be represented as | ||
− | + | $$ | |
+ | f(z) = \ | ||
− | + | \frac{1}{\sqrt {2 \pi } } | |
− | |||
+ | \int\limits _ {- \sigma } ^ \sigma | ||
+ | e ^ {izt} \phi (t) dt, | ||
+ | $$ | ||
+ | where $ \phi (t) \in {L _ {2} } ( - \sigma , \sigma ) $. | ||
====Comments==== | ====Comments==== | ||
− | The statement at the end of the article above is called the [[ | + | The statement at the end of the article above is called the [[Paley–Wiener theorem]]. |
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R.P. Boas, "Entire functions" , Acad. Press (1954) {{MR|0068627}} {{ZBL|0058.30201}} </TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> E. Borel, "Leçons sur les séries divergentes" , Gauthier-Villars (1928) {{ZBL|54.0223.01}} </TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> M.M. Dzhrbashyan, "Integral transforms and representation of functions in the complex domain" , Moscow (1966) (In Russian)</TD></TR> | ||
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> R.P. Boas, "Entire functions" , Acad. Press (1954) {{MR|0068627}} {{ZBL|0058.30201}} </TD></TR> | ||
+ | </table> |
Latest revision as of 17:35, 11 November 2023
An integral transform of the type
$$ \gamma (t) = \int\limits _ { 0 } ^ \infty f(z)e ^ {-zt} dz, $$
where $ f(z) $ is an entire function of exponential type. The Borel transform is a special case of the Laplace transform. The function $ \gamma (t) $ is called the Borel transform of $ f(z) $. If
$$ f(z) = \sum _ { n=0 } ^ \infty \frac{a _ {n} }{n!} z ^ {n} , $$
then
$$ \gamma (t) = \sum _ { v=0 } ^ \infty a _ {v} t ^ {-(v+1) } ; $$
the series converges for $ | t | > \sigma $, where $ \sigma $ is the type of $ f(z) $. Let $ \overline{D}\; $ be the smallest closed convex set containing all the singularities of the function $ \gamma (t) $; let
$$ K( \phi ) = \max _ {z \in \overline{D}\; } \ \mathop{\rm Re} (ze ^ {-i \phi } ) $$
be the supporting function of $ \overline{D}\; $; and let $ h ( \phi ) $ be the growth indicator function of $ f(z) $; then $ K( \phi ) = h( - \phi ) $. If in a Borel transform the integration takes place over a ray $ \mathop{\rm arg} z = \phi $, the corresponding integral will converge in the half-plane $ x \cos \phi + y \sin \phi > K ( - \phi ) $. Let $ C $ be a closed contour surrounding $ \overline{D}\; $; then
$$ f(z) = \frac{1}{2 \pi i } \int\limits _ { C } \gamma (t) e ^ {zt} dt. $$
If additional conditions are imposed, other representations may be deduced from this formula. Thus, consider the class of entire functions $ f(z) $ of exponential type $ \leq \sigma $ for which
$$ \int\limits _ {- \infty } ^ \infty | f(x) | ^ {2} dx < \infty . $$
This class is identical with the class of functions $ f(z) $ that can be represented as
$$ f(z) = \ \frac{1}{\sqrt {2 \pi } } \int\limits _ {- \sigma } ^ \sigma e ^ {izt} \phi (t) dt, $$
where $ \phi (t) \in {L _ {2} } ( - \sigma , \sigma ) $.
Comments
The statement at the end of the article above is called the Paley–Wiener theorem.
References
[1] | E. Borel, "Leçons sur les séries divergentes" , Gauthier-Villars (1928) Zbl 54.0223.01 |
[2] | M.M. Dzhrbashyan, "Integral transforms and representation of functions in the complex domain" , Moscow (1966) (In Russian) |
[a1] | R.P. Boas, "Entire functions" , Acad. Press (1954) MR0068627 Zbl 0058.30201 |
Borel transform. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Borel_transform&oldid=24385