Namespaces
Variants
Actions

Difference between revisions of "Dickman-function(2)"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (AUTOMATIC EDIT (latexlist): Replaced 2 formulas out of 2 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
(details)
 
(One intermediate revision by the same user not shown)
Line 13: Line 13:
  
 
$$  
 
$$  
\rho ( u ) = 1   ( 0 \leq  u \leq  1 ) ,
+
\rho ( u ) = 1 \quad ( 0 \leq  u \leq  1 ) ,
 
$$
 
$$
  
 
$$  
 
$$  
u \rho  ^  \prime  ( u ) = - \rho ( u - 1 )   ( u > 1 ) .
+
u \rho  ^  \prime  ( u ) = - \rho ( u - 1 ) \quad  ( u > 1 ) .
 
$$
 
$$
  
Line 24: Line 24:
 
of positive integers not exceeding  $  x $
 
of positive integers not exceeding  $  x $
 
that are free of prime factors greater than  $  y $:  
 
that are free of prime factors greater than  $  y $:  
for any fixed  $  u > 0 $,  
+
for any fixed  $  u > 0 $,  
 
one has  $  \Psi ( x,x ^ { {1 / u } } ) \sim \rho ( u ) x $
 
one has  $  \Psi ( x,x ^ { {1 / u } } ) \sim \rho ( u ) x $
 
as  $  u \rightarrow \infty $[[#References|[a2]]], [[#References|[a4]]].
 
as  $  u \rightarrow \infty $[[#References|[a2]]], [[#References|[a4]]].
Line 38: Line 38:
 
\frac{\xi  ^  \prime  ( u ) }{2 \pi }
 
\frac{\xi  ^  \prime  ( u ) }{2 \pi }
 
  } } \times
 
  } } \times
$$
 
 
$$
 
\times
 
 
{ \mathop{\rm exp} } \left \{ \gamma - u \xi ( u ) + \int\limits _ { 0 } ^ {  \xi  ( u ) } { {
 
{ \mathop{\rm exp} } \left \{ \gamma - u \xi ( u ) + \int\limits _ { 0 } ^ {  \xi  ( u ) } { {
 
\frac{e  ^ {s} - 1 }{s}
 
\frac{e  ^ {s} - 1 }{s}
  } }  {ds } \right \}   ( u > 1 ) ,
+
  } }  {ds } \right \} \quad ( u > 1 ) ,
 
$$
 
$$
  
where $ \gamma $
+
where $\gamma$ is the [[Euler constant]] and $\xi(u)$
is the [[Euler constant|Euler constant]] and $ \xi ( u ) $
+
is the unique positive solution of the equation  $e^{\xi(u)} = 1 + u \xi(u)$.
is the unique positive solution of the equation  $ e ^ {\xi ( u ) } = 1 + u \xi ( u ) $.
 
  
 
====References====
 
====References====
<table><tr><td valign="top">[a1]</td> <td valign="top">  K. Alladi,   "The Turán–Kubilius inequality for integers without large prime factors"  ''J. Reine Angew. Math.'' , '''335'''  (1982)  pp. 180–196</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  N.G. de Bruijn,   "On the number of positive integers $\leq x$ and free of prime factors $&gt; y$"  ''Nederl. Akad. Wetensch. Proc. Ser. A'' , '''54'''  (1951)  pp. 50–60</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  N.G. de Bruijn,   "The asymptotic behaviour of a function occurring in the theory of primes"  ''J. Indian Math. Soc. (N.S.)'' , '''15'''  (1951)  pp. 25–32</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  A. Hildebrand,   G. Tenenbaum,   "Integers without large prime factors"  ''J. de Théorie des Nombres de Bordeaux'' , '''5'''  (1993)  pp. 411–484</td></tr></table>
+
<table>
 +
<tr><td valign="top">[a1]</td> <td valign="top">  K. Alladi, "The Turán–Kubilius inequality for integers without large prime factors"  ''J. Reine Angew. Math.'' , '''335'''  (1982)  pp. 180–196</td></tr>
 +
<tr><td valign="top">[a2]</td> <td valign="top">  N.G. de Bruijn, "On the number of positive integers $\leq x$ and free of prime factors $> y$"  ''Nederl. Akad. Wetensch. Proc. Ser. A'' , '''54'''  (1951)  pp. 50–60</td></tr>
 +
<tr><td valign="top">[a3]</td> <td valign="top">  N.G. de Bruijn, "The asymptotic behaviour of a function occurring in the theory of primes"  ''J. Indian Math. Soc. (N.S.)'' , '''15'''  (1951)  pp. 25–32</td></tr>
 +
<tr><td valign="top">[a4]</td> <td valign="top">  A. Hildebrand, G. Tenenbaum, "Integers without large prime factors"  ''J. de Théorie des Nombres de Bordeaux'' , '''5'''  (1993)  pp. 411–484</td></tr>
 +
</table>

Latest revision as of 08:55, 10 November 2023


The unique continuous solution of the system

$$ \rho ( u ) = 1 \quad ( 0 \leq u \leq 1 ) , $$

$$ u \rho ^ \prime ( u ) = - \rho ( u - 1 ) \quad ( u > 1 ) . $$

The Dickman function $ \rho ( u ) $ occurs in the problem of estimating the number $ \Psi ( x,y ) $ of positive integers not exceeding $ x $ that are free of prime factors greater than $ y $: for any fixed $ u > 0 $, one has $ \Psi ( x,x ^ { {1 / u } } ) \sim \rho ( u ) x $ as $ u \rightarrow \infty $[a2], [a4].

The function $ \rho ( u ) $ is positive, non-increasing and tends to zero at a rate faster than exponential as $ u \rightarrow \infty $. A precise asymptotic estimate is given by the de Bruijn–Alladi formula [a1], [a3]:

$$ \rho ( u ) = ( 1 + O ( { \frac{1}{u} } ) ) \sqrt { { \frac{\xi ^ \prime ( u ) }{2 \pi } } } \times { \mathop{\rm exp} } \left \{ \gamma - u \xi ( u ) + \int\limits _ { 0 } ^ { \xi ( u ) } { { \frac{e ^ {s} - 1 }{s} } } {ds } \right \} \quad ( u > 1 ) , $$

where $\gamma$ is the Euler constant and $\xi(u)$ is the unique positive solution of the equation $e^{\xi(u)} = 1 + u \xi(u)$.

References

[a1] K. Alladi, "The Turán–Kubilius inequality for integers without large prime factors" J. Reine Angew. Math. , 335 (1982) pp. 180–196
[a2] N.G. de Bruijn, "On the number of positive integers $\leq x$ and free of prime factors $> y$" Nederl. Akad. Wetensch. Proc. Ser. A , 54 (1951) pp. 50–60
[a3] N.G. de Bruijn, "The asymptotic behaviour of a function occurring in the theory of primes" J. Indian Math. Soc. (N.S.) , 15 (1951) pp. 25–32
[a4] A. Hildebrand, G. Tenenbaum, "Integers without large prime factors" J. de Théorie des Nombres de Bordeaux , 5 (1993) pp. 411–484
How to Cite This Entry:
Dickman-function(2). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dickman-function(2)&oldid=50124
This article was adapted from an original article by A. Hildebrand (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article