Difference between revisions of "Wiener field"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
m (→References) |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
+ | <!--This article has been texified automatically. Since there was no Nroff source code for this article, | ||
+ | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist | ||
+ | was used. | ||
+ | If the TeX and formula formatting is correct and if all png images have been replaced by TeX code, please remove this message and the {{TEX|semi-auto}} category. | ||
+ | |||
+ | Out of 87 formulas, 86 were replaced by TEX code.--> | ||
+ | |||
+ | {{TEX|semi-auto}}{{TEX|part}} | ||
A generalization of the notion of [[Wiener process|Wiener process]] for the case of multivariate time. This generalization can be performed in two ways. | A generalization of the notion of [[Wiener process|Wiener process]] for the case of multivariate time. This generalization can be performed in two ways. | ||
− | == | + | ==$N$-parameter Wiener field (Brownian motion).== |
− | Let | + | Let $W ^ { ( N ) } ( t )$ be a Gaussian separable real-valued field on $\mathbf R _ { + } ^ { N } = \{ t = ( t _ { 1 } , \dots , t _ { N } ) : t _ { i } \geq 0 \}$ with zero mean and covariance function |
− | + | \begin{equation*} \mathsf{E} W ^ { ( N ) } ( t ) W ^ { ( N ) } ( s ) = \prod _ { i = 1 } ^ { N } t _ { i } \bigwedge s _ { i }, \end{equation*} | |
− | where | + | where $t \wedge s = \operatorname { min } ( t , s )$. Such a field can be regarded as the distribution function of a [[White noise|white noise]] $W (\cdot)$ on $\mathbf{R} ^ { N }$, which is a [[Random function|random function]] on bounded Borel sets in $\mathbf{R} ^ { N }$ such that $W ( A )$ has a [[Normal distribution|normal distribution]] with zero mean and covariance function $\mathsf{E} W ( A ) W ( B ) = m ( A \cap B )$ [[#References|[a11]]]. Here, $m ( . )$ denotes the [[Lebesgue measure|Lebesgue measure]] on $\mathbf{R} ^ { N }$. The following equality holds: $W ^ { ( N ) } ( t ) = W ( R _ { t } )$, where $R _ { t } = \prod _ { i = 1 } ^ { N } [ 0 , t _ { i } )$ is a parallelepiped in ${\bf R} _ { + } ^ { N }$. |
− | The random field | + | The random field $W ^ { ( N ) } ( t )$ was introduced by T. Kitagava [[#References|[a14]]] in connection with its applications to statistical problems. N.N. Chentsov proved the almost sure continuity of the sample functions of $W ^ { ( N ) } ( t )$ [[#References|[a3]]]. For any fixed $N - 1$ time variables, $W ^ { ( N ) } ( t )$ is a one-parameter Wiener process as a function of the free time variable. Some properties of $W ^ { ( N ) } ( t )$ are similar to the corresponding properties of the Wiener process: the sample functions of $W ^ { ( N ) } ( t )$ almost surely satisfy Hölder's stochastic condition with exponent $\alpha < 1 / 2$ [[#References|[a2]]]; various forms of the [[Law of the iterated logarithm|law of the iterated logarithm]] hold true ([[#References|[a5]]], [[#References|[a18]]], [[#References|[a20]]]). An exact formula for $\mathsf{P} \{ \operatorname { sup } W ^ { ( N ) } ( t ) > u \}$ exists only for the Wiener process. For $N > 1$, only lower and upper bounds ($N = 2$, [[#References|[a12]]]) and some asymptotic formulas for $u \rightarrow \infty$ [[#References|[a21]]] have been derived so far (1998). The level sets of $W ^ { ( N ) } ( t )$ have an extremely complicated geometric and topological structure ([[#References|[a8]]], [[#References|[a9]]], [[#References|[a10]]], [[#References|[a13]]]). R.J. Adler [[#References|[a1]]] showed that the [[Hausdorff dimension|Hausdorff dimension]] of these sets equals $N - 1 / 2$. |
− | The Wiener process is a [[Markov process|Markov process]]: conditional of the present value | + | The Wiener process is a [[Markov process|Markov process]]: conditional of the present value $W ( t )$, the past $W ( v )$ ($v < t$) and the future $W ( u )$ ($u > t$) are independent. For the multivariate case there are several definitions of the Markovian property. Let $\mathcal{M}$ denote a family of Jordan surfaces in $\mathbf{R} ^ { N }$. Each such surface $\partial D$ divides $\mathbf{R} ^ { N }$ into two parts: $D ^ { - }$, the interior of $\partial D$, or the "past" , and $D ^ { + }$, the exterior of $\partial D$, or the "future" . A random field $X ( t )$ is said to be Markovian with respect to the family $\mathcal{M}$ if for arbitrary $\partial D$ from $\mathcal{M}$ and arbitrary $t _ { 1 } \in D ^ { - }$, $t _ { 2 } \in D ^ { + }$, the random variables $X ( t _ { 1 } )$ and $X ( t _ { 2 } )$ are conditionally independent given $\{ X ( t ) : t \in \partial D \}$ [[#References|[a24]]]. A Wiener field $W ^ { ( 2 ) } ( t )$ is a Markovian field with respect to the family $\mathcal{M}$ consisting of all finite unions of rectangles whose sides are parallel to the coordinate axes ([[#References|[a22]]], [[#References|[a23]]]). For $A \subset \mathbf{R} ^ { 2 }$, its sharp field $H ( A )$ and germ field $G ( A )$ are defined, respectively, by $H ( A ) = \sigma \left\{ W ^ { ( 2 ) } ( t ) : t \in A \right\}$ and $G ( A ) = \cap _ { \epsilon > 0} H ( A _ { \epsilon } )$, where $A _ { \epsilon }$ is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018059.png"/>-neighbourhood of $A$. A Wiener sheet $W ^ { ( 2 ) } ( t )$ is germ Markovian, i.e. for every bounded subset $A \subset \mathbf{R} _ { + } ^ { 2 }$, the fields $H ( A )$ and $H ( A ^ { c } )$ are conditionally independent given $G ( \partial A )$ ([[#References|[a6]]], [[#References|[a7]]], [[#References|[a22]]]). |
− | Among the objects closely related to | + | Among the objects closely related to $W ^ { ( N ) } ( t )$ are the Wiener pillow and the Wiener bridge. These are Gaussian random fields (cf. also [[Random field|Random field]]) on $[ 0,1 ] ^ { N }$ with zero mean and covariance functions |
− | + | \begin{equation*} r _ { 1 } ( t , s ) = \prod _ { i = 1 } ^ { N } ( t _ { i } \bigwedge s _ { i } - t _ { i } s _ { i } ), \end{equation*} | |
− | + | \begin{equation*} r _ { 2 } ( t , s ) = \prod _ { i = 1 } ^ { N } t _ { i } \wedge s _ { i } - \prod _ { i = 1 } ^ { N } t _ { i } s _ { i } , \end{equation*} | |
respectively. | respectively. | ||
− | ==Lévy | + | ==Lévy $N$-parameter Brownian motion.== |
− | This is a Gaussian random field | + | This is a Gaussian random field $\xi ( t )$ on $\mathbf{R} ^ { N }$ with zero mean and covariance function |
− | + | \begin{equation*} \mathsf{E} \xi ( t ) \xi ( s ) = \frac { 1 } { 2 } ( | t | + | s | - | t - s | ), \end{equation*} | |
− | where | + | where $| t | = \sqrt { \sum _ { k = 1 } ^ { N } t _ { k } ^ { 2 } }$ [[#References|[a15]]]. When $N = 1$, $\xi ( t )$ becomes a [[Wiener process|Wiener process]]. The random variables $\xi ( t ) - \xi ( s )$ clearly form a Wiener process if $t$ moves along some semi-straight line with terminal point $s$. $\xi ( t )$ has the following representation in terms of white noise: |
− | + | \begin{equation*} \xi ( t ) = \frac { 1 } { \sqrt { \omega _ { N + 1 } } } \int _ { \mathbf{R} ^ { N } } \frac { e ^ { i ( t , \lambda ) } - 1 } { | \lambda | ^ { ( N + 1 ) / 2 } } W ( d \lambda ), \end{equation*} | |
− | where | + | where $\omega _ { n }$ is the surface area of the $n$-dimensional unit sphere [[#References|[a17]]]. H.P. McKean Jr. [[#References|[a16]]] has shown that $\xi ( t )$ is germ Markovian with respect to closed bounded subsets in $\mathbf{R} ^ { N } \backslash \{ 0 \}$ for each odd $N$, whereas for each even $N$ the Markovian property does not hold. |
====References==== | ====References==== | ||
− | <table>< | + | <table> |
+ | <tr><td valign="top">[a1]</td> <td valign="top"> R.J. Adler, "The uniform dimension of the level sets of a Brownian sheet" ''Ann. of Probab.'' , '''6''' (1978) pp. 509–518 {{MR|0490818}} {{ZBL|0378.60028}} </td></tr> | ||
+ | <tr><td valign="top">[a2]</td> <td valign="top"> R.J. Adler, "The geometry of random fields" , Wiley (1981) {{MR|0611857}} {{ZBL|0478.60059}} </td></tr> | ||
+ | <tr><td valign="top">[a3]</td> <td valign="top"> N.N. Chentsov, "Wiener random fields depending on several parameters" ''Dokl. Akad. Nauk SSSR'' , '''106''' (1956) pp. 607–609</td></tr> | ||
+ | <tr><td valign="top">[a4]</td> <td valign="top"> N.N. Chentsov, "A multiparametric Brownian motion Lévy and generalized white noise" ''Theory Probab. Appl.'' , '''2''' (1957) pp. 281–282</td></tr> | ||
+ | <tr><td valign="top">[a5]</td> <td valign="top"> M. Csőrgő, P. Révész, "Strong approximations in probability and statistics" , Akad. Kiado (1981) {{MR|0666546}} {{ZBL|0539.60029}} </td></tr> | ||
+ | <tr><td valign="top">[a6]</td> <td valign="top"> R.C. Dalang, F. Russo, "A prediction problem for the Brownian sheet" ''J. Multivariate Anal.'' , '''26''' (1988) pp. 16–47 {{MR|0955202}} {{ZBL|0664.60052}} </td></tr> | ||
+ | <tr><td valign="top">[a7]</td> <td valign="top"> R.C. Dalang, J.B. Walsh, "The sharp Markov property of the Brownian sheet and related processes" ''Acta Math.'' , '''168''' (1992) pp. 153–218 {{MR|1161265}} {{ZBL|0759.60056}} </td></tr> | ||
+ | <tr><td valign="top">[a8]</td> <td valign="top"> R.C. Dalang, J.B. Walsh, "Geography of the level sets of the Brownian sheet" ''Probab. Th. Rel. Fields'' , '''96''' (1993) pp. 153–176 {{MR|1227030}} {{ZBL|0792.60038}} </td></tr> | ||
+ | <tr><td valign="top">[a9]</td> <td valign="top"> R.C. Dalang, J.B. Walsh, "The structure of a Brownian bubble" ''Probab. Th. Rel. Fields'' , '''96''' (1993) pp. 475–501 {{MR|1234620}} {{ZBL|0794.60047}} </td></tr> | ||
+ | <tr><td valign="top">[a10]</td> <td valign="top"> R.C. Dalang, T. Mountford, "Nondifferentiability of curves on the Brownian sheet" ''Ann. of Probab.'' , '''24''' (1996) pp. 182–195 {{MR|1387631}} {{ZBL|0861.60058}} </td></tr> | ||
+ | <tr><td valign="top">[a11]</td> <td valign="top"> R.M. Dudley, "Sample functions of the Gaussian process" ''Ann. of Probab.'' , '''1''' (1973) pp. 66–103 {{MR|0346884}} {{ZBL|0261.60033}} </td></tr> | ||
+ | <tr><td valign="top">[a12]</td> <td valign="top"> V. Goodman, "Distribution estimates for functionals of the two-parameter Wiener process" ''Ann. of Probab.'' , '''4''' (1976) pp. 977–982 {{MR|0423556}} {{ZBL|0344.60048}} </td></tr> | ||
+ | <tr><td valign="top">[a13]</td> <td valign="top"> W. Kendall, "Contours of Brownian processes with several-dimensional time" ''ZWvG'' , '''52''' (1980) pp. 269–276 {{MR|0576887}} {{ZBL|}} </td></tr> | ||
+ | <tr><td valign="top">[a14]</td> <td valign="top"> T. Kitagava, "Analysis of variance applied to function spaces" ''Mem. Fac. Sci. Kyushu Univ. Ser. A'' , '''6''' (1951) pp. 41–53</td></tr> | ||
+ | <tr><td valign="top">[a15]</td> <td valign="top"> P. Lévy, "Processus stochastiques et mouvement brownien" , Gauthier-Villars (1948) {{MR|}} {{ZBL|0137.11602}} </td></tr> | ||
+ | <tr><td valign="top">[a16]</td> <td valign="top"> H.P. McKean Jr., "Brownian motion with a several-dimensional time" ''Theory Probab. Appl.'' , '''8''' (1963) pp. 335–354</td></tr> | ||
+ | <tr><td valign="top">[a17]</td> <td valign="top"> G.M. Molchan, "Some problems for Lévy's Brownian motion" ''Theory Probab. Appl.'' , '''12''' (1967) pp. 682–690</td></tr> | ||
+ | <tr><td valign="top">[a18]</td> <td valign="top"> S. Orey, W. Pruitt, "Sample functions of the N-parameter Wiener process" ''Ann. of Probab.'' , '''1''' (1973) pp. 138–163 {{MR|0346925}} {{ZBL|0284.60036}} </td></tr> | ||
+ | <tr><td valign="top">[a19]</td> <td valign="top"> S.R. Paranjape, C. Park, "Distribution of the supremum of the two-parameter Yeh–Wiener process on the boundary" ''J. Appl. Probab.'' , '''10''' (1973) pp. 875–880 {{MR|0381015}} {{ZBL|0281.60081}} </td></tr> | ||
+ | <tr><td valign="top">[a20]</td> <td valign="top"> S.R. Paranjape, C. Park, "Laws of iterated logarithm of multiparameter Wiener process" ''J. Multivariate Anal.'' , '''3''' (1973) pp. 132–136 {{MR|0326852}} {{ZBL|}} </td></tr> | ||
+ | <tr><td valign="top">[a21]</td> <td valign="top"> V.I. Piterbarg, "Asymptotic methods in the theory of Gaussian processes and fields" , Amer. Math. Soc. (1996) {{MR|1361884}} {{ZBL|0841.60024}} </td></tr> | ||
+ | <tr><td valign="top">[a22]</td> <td valign="top"> Yu.A. Rosanov, "Markov random fields" , Springer (1982)</td></tr> | ||
+ | <tr><td valign="top">[a23]</td> <td valign="top"> J.B. Walsh, "Propagation of singularities in the Brownian sheet" ''Ann. of Probab.'' , '''Ann. 10''' (1982) pp. 279–288 {{MR|0647504}} {{ZBL|0528.60076}} </td></tr> | ||
+ | <tr><td valign="top">[a24]</td> <td valign="top"> M.I. Yadrenko, "Spectral theory of random fields" , Optim. Software (1983) {{MR|0697386}} {{ZBL|0539.60048}} </td></tr> | ||
+ | </table> |
Latest revision as of 08:52, 10 November 2023
A generalization of the notion of Wiener process for the case of multivariate time. This generalization can be performed in two ways.
$N$-parameter Wiener field (Brownian motion).
Let $W ^ { ( N ) } ( t )$ be a Gaussian separable real-valued field on $\mathbf R _ { + } ^ { N } = \{ t = ( t _ { 1 } , \dots , t _ { N } ) : t _ { i } \geq 0 \}$ with zero mean and covariance function
\begin{equation*} \mathsf{E} W ^ { ( N ) } ( t ) W ^ { ( N ) } ( s ) = \prod _ { i = 1 } ^ { N } t _ { i } \bigwedge s _ { i }, \end{equation*}
where $t \wedge s = \operatorname { min } ( t , s )$. Such a field can be regarded as the distribution function of a white noise $W (\cdot)$ on $\mathbf{R} ^ { N }$, which is a random function on bounded Borel sets in $\mathbf{R} ^ { N }$ such that $W ( A )$ has a normal distribution with zero mean and covariance function $\mathsf{E} W ( A ) W ( B ) = m ( A \cap B )$ [a11]. Here, $m ( . )$ denotes the Lebesgue measure on $\mathbf{R} ^ { N }$. The following equality holds: $W ^ { ( N ) } ( t ) = W ( R _ { t } )$, where $R _ { t } = \prod _ { i = 1 } ^ { N } [ 0 , t _ { i } )$ is a parallelepiped in ${\bf R} _ { + } ^ { N }$.
The random field $W ^ { ( N ) } ( t )$ was introduced by T. Kitagava [a14] in connection with its applications to statistical problems. N.N. Chentsov proved the almost sure continuity of the sample functions of $W ^ { ( N ) } ( t )$ [a3]. For any fixed $N - 1$ time variables, $W ^ { ( N ) } ( t )$ is a one-parameter Wiener process as a function of the free time variable. Some properties of $W ^ { ( N ) } ( t )$ are similar to the corresponding properties of the Wiener process: the sample functions of $W ^ { ( N ) } ( t )$ almost surely satisfy Hölder's stochastic condition with exponent $\alpha < 1 / 2$ [a2]; various forms of the law of the iterated logarithm hold true ([a5], [a18], [a20]). An exact formula for $\mathsf{P} \{ \operatorname { sup } W ^ { ( N ) } ( t ) > u \}$ exists only for the Wiener process. For $N > 1$, only lower and upper bounds ($N = 2$, [a12]) and some asymptotic formulas for $u \rightarrow \infty$ [a21] have been derived so far (1998). The level sets of $W ^ { ( N ) } ( t )$ have an extremely complicated geometric and topological structure ([a8], [a9], [a10], [a13]). R.J. Adler [a1] showed that the Hausdorff dimension of these sets equals $N - 1 / 2$.
The Wiener process is a Markov process: conditional of the present value $W ( t )$, the past $W ( v )$ ($v < t$) and the future $W ( u )$ ($u > t$) are independent. For the multivariate case there are several definitions of the Markovian property. Let $\mathcal{M}$ denote a family of Jordan surfaces in $\mathbf{R} ^ { N }$. Each such surface $\partial D$ divides $\mathbf{R} ^ { N }$ into two parts: $D ^ { - }$, the interior of $\partial D$, or the "past" , and $D ^ { + }$, the exterior of $\partial D$, or the "future" . A random field $X ( t )$ is said to be Markovian with respect to the family $\mathcal{M}$ if for arbitrary $\partial D$ from $\mathcal{M}$ and arbitrary $t _ { 1 } \in D ^ { - }$, $t _ { 2 } \in D ^ { + }$, the random variables $X ( t _ { 1 } )$ and $X ( t _ { 2 } )$ are conditionally independent given $\{ X ( t ) : t \in \partial D \}$ [a24]. A Wiener field $W ^ { ( 2 ) } ( t )$ is a Markovian field with respect to the family $\mathcal{M}$ consisting of all finite unions of rectangles whose sides are parallel to the coordinate axes ([a22], [a23]). For $A \subset \mathbf{R} ^ { 2 }$, its sharp field $H ( A )$ and germ field $G ( A )$ are defined, respectively, by $H ( A ) = \sigma \left\{ W ^ { ( 2 ) } ( t ) : t \in A \right\}$ and $G ( A ) = \cap _ { \epsilon > 0} H ( A _ { \epsilon } )$, where $A _ { \epsilon }$ is an -neighbourhood of $A$. A Wiener sheet $W ^ { ( 2 ) } ( t )$ is germ Markovian, i.e. for every bounded subset $A \subset \mathbf{R} _ { + } ^ { 2 }$, the fields $H ( A )$ and $H ( A ^ { c } )$ are conditionally independent given $G ( \partial A )$ ([a6], [a7], [a22]).
Among the objects closely related to $W ^ { ( N ) } ( t )$ are the Wiener pillow and the Wiener bridge. These are Gaussian random fields (cf. also Random field) on $[ 0,1 ] ^ { N }$ with zero mean and covariance functions
\begin{equation*} r _ { 1 } ( t , s ) = \prod _ { i = 1 } ^ { N } ( t _ { i } \bigwedge s _ { i } - t _ { i } s _ { i } ), \end{equation*}
\begin{equation*} r _ { 2 } ( t , s ) = \prod _ { i = 1 } ^ { N } t _ { i } \wedge s _ { i } - \prod _ { i = 1 } ^ { N } t _ { i } s _ { i } , \end{equation*}
respectively.
Lévy $N$-parameter Brownian motion.
This is a Gaussian random field $\xi ( t )$ on $\mathbf{R} ^ { N }$ with zero mean and covariance function
\begin{equation*} \mathsf{E} \xi ( t ) \xi ( s ) = \frac { 1 } { 2 } ( | t | + | s | - | t - s | ), \end{equation*}
where $| t | = \sqrt { \sum _ { k = 1 } ^ { N } t _ { k } ^ { 2 } }$ [a15]. When $N = 1$, $\xi ( t )$ becomes a Wiener process. The random variables $\xi ( t ) - \xi ( s )$ clearly form a Wiener process if $t$ moves along some semi-straight line with terminal point $s$. $\xi ( t )$ has the following representation in terms of white noise:
\begin{equation*} \xi ( t ) = \frac { 1 } { \sqrt { \omega _ { N + 1 } } } \int _ { \mathbf{R} ^ { N } } \frac { e ^ { i ( t , \lambda ) } - 1 } { | \lambda | ^ { ( N + 1 ) / 2 } } W ( d \lambda ), \end{equation*}
where $\omega _ { n }$ is the surface area of the $n$-dimensional unit sphere [a17]. H.P. McKean Jr. [a16] has shown that $\xi ( t )$ is germ Markovian with respect to closed bounded subsets in $\mathbf{R} ^ { N } \backslash \{ 0 \}$ for each odd $N$, whereas for each even $N$ the Markovian property does not hold.
References
[a1] | R.J. Adler, "The uniform dimension of the level sets of a Brownian sheet" Ann. of Probab. , 6 (1978) pp. 509–518 MR0490818 Zbl 0378.60028 |
[a2] | R.J. Adler, "The geometry of random fields" , Wiley (1981) MR0611857 Zbl 0478.60059 |
[a3] | N.N. Chentsov, "Wiener random fields depending on several parameters" Dokl. Akad. Nauk SSSR , 106 (1956) pp. 607–609 |
[a4] | N.N. Chentsov, "A multiparametric Brownian motion Lévy and generalized white noise" Theory Probab. Appl. , 2 (1957) pp. 281–282 |
[a5] | M. Csőrgő, P. Révész, "Strong approximations in probability and statistics" , Akad. Kiado (1981) MR0666546 Zbl 0539.60029 |
[a6] | R.C. Dalang, F. Russo, "A prediction problem for the Brownian sheet" J. Multivariate Anal. , 26 (1988) pp. 16–47 MR0955202 Zbl 0664.60052 |
[a7] | R.C. Dalang, J.B. Walsh, "The sharp Markov property of the Brownian sheet and related processes" Acta Math. , 168 (1992) pp. 153–218 MR1161265 Zbl 0759.60056 |
[a8] | R.C. Dalang, J.B. Walsh, "Geography of the level sets of the Brownian sheet" Probab. Th. Rel. Fields , 96 (1993) pp. 153–176 MR1227030 Zbl 0792.60038 |
[a9] | R.C. Dalang, J.B. Walsh, "The structure of a Brownian bubble" Probab. Th. Rel. Fields , 96 (1993) pp. 475–501 MR1234620 Zbl 0794.60047 |
[a10] | R.C. Dalang, T. Mountford, "Nondifferentiability of curves on the Brownian sheet" Ann. of Probab. , 24 (1996) pp. 182–195 MR1387631 Zbl 0861.60058 |
[a11] | R.M. Dudley, "Sample functions of the Gaussian process" Ann. of Probab. , 1 (1973) pp. 66–103 MR0346884 Zbl 0261.60033 |
[a12] | V. Goodman, "Distribution estimates for functionals of the two-parameter Wiener process" Ann. of Probab. , 4 (1976) pp. 977–982 MR0423556 Zbl 0344.60048 |
[a13] | W. Kendall, "Contours of Brownian processes with several-dimensional time" ZWvG , 52 (1980) pp. 269–276 MR0576887 |
[a14] | T. Kitagava, "Analysis of variance applied to function spaces" Mem. Fac. Sci. Kyushu Univ. Ser. A , 6 (1951) pp. 41–53 |
[a15] | P. Lévy, "Processus stochastiques et mouvement brownien" , Gauthier-Villars (1948) Zbl 0137.11602 |
[a16] | H.P. McKean Jr., "Brownian motion with a several-dimensional time" Theory Probab. Appl. , 8 (1963) pp. 335–354 |
[a17] | G.M. Molchan, "Some problems for Lévy's Brownian motion" Theory Probab. Appl. , 12 (1967) pp. 682–690 |
[a18] | S. Orey, W. Pruitt, "Sample functions of the N-parameter Wiener process" Ann. of Probab. , 1 (1973) pp. 138–163 MR0346925 Zbl 0284.60036 |
[a19] | S.R. Paranjape, C. Park, "Distribution of the supremum of the two-parameter Yeh–Wiener process on the boundary" J. Appl. Probab. , 10 (1973) pp. 875–880 MR0381015 Zbl 0281.60081 |
[a20] | S.R. Paranjape, C. Park, "Laws of iterated logarithm of multiparameter Wiener process" J. Multivariate Anal. , 3 (1973) pp. 132–136 MR0326852 |
[a21] | V.I. Piterbarg, "Asymptotic methods in the theory of Gaussian processes and fields" , Amer. Math. Soc. (1996) MR1361884 Zbl 0841.60024 |
[a22] | Yu.A. Rosanov, "Markov random fields" , Springer (1982) |
[a23] | J.B. Walsh, "Propagation of singularities in the Brownian sheet" Ann. of Probab. , Ann. 10 (1982) pp. 279–288 MR0647504 Zbl 0528.60076 |
[a24] | M.I. Yadrenko, "Spectral theory of random fields" , Optim. Software (1983) MR0697386 Zbl 0539.60048 |
Wiener field. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Wiener_field&oldid=24596