Namespaces
Variants
Actions

Difference between revisions of "Sober space"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Every subset of a sober TD space is sober)
m (→‎References: isbn link)
 
Line 9: Line 9:
  
 
==References==
 
==References==
*  Peter T. Johnstone;        ''Sketches of an elephant'',    ser. Oxford Logic Guides  (2002) Oxford University Press. ISBN 0198534256 pp. 491-492 {{ZBL|1071.18001}}
+
*  Peter T. Johnstone;        ''Sketches of an elephant'',    ser. Oxford Logic Guides  (2002) Oxford University Press. {{ISBN|0198534256}} pp. 491-492 {{ZBL|1071.18001}}
*  Maria Cristina Pedicchio;        Walter Tholen; ''Categorical Foundations: Special Topics in Order, Topology, Algebra, and Sheaf Theory'',        (2004) Cambridge University Press ISBN 0-521-83414-7. pp. 54-55   
+
*  Maria Cristina Pedicchio;        Walter Tholen; ''Categorical Foundations: Special Topics in Order, Topology, Algebra, and Sheaf Theory'',        (2004) Cambridge University Press {{ISBN|0-521-83414-7}}. pp. 54-55   
*  Steven Vickers ''Topology via Logic'' Cambridge Tracts in Theoretical Computer Science '''5''' Cambridge University Press (1989) ISBN 0-521-36062-5 {{ZBL|0668.54001}}. p.66
+
*  Steven Vickers ''Topology via Logic'' Cambridge Tracts in Theoretical Computer Science '''5''' Cambridge University Press (1989) {{ISBN|0-521-36062-5}} {{ZBL|0668.54001}}. p.66

Latest revision as of 16:50, 4 November 2023

2020 Mathematics Subject Classification: Primary: 54Dxx [MSN][ZBL]

A topological space in which every irreducible closed set has a unique generic point. Here a closed set is irreducible if it is not the union of two non-empty proper closed subsets of itself.

Any Hausdorff space is sober, since the only irreducible subsets are singletons. Any sober space is a T0 space. However, sobriety is not equivalent to the T1 space condition: an infinite set with the cofinite topology is T1 but not sober whereas a Sierpinski space is sober but not T1.

A sober space is characterised by its lattice of open sets. An open set in a sober space is again a sober space, as is a closed set. Every subset of a sober TD space is sober.

References

  • Peter T. Johnstone; Sketches of an elephant, ser. Oxford Logic Guides (2002) Oxford University Press. ISBN 0198534256 pp. 491-492 Zbl 1071.18001
  • Maria Cristina Pedicchio; Walter Tholen; Categorical Foundations: Special Topics in Order, Topology, Algebra, and Sheaf Theory, (2004) Cambridge University Press ISBN 0-521-83414-7. pp. 54-55
  • Steven Vickers Topology via Logic Cambridge Tracts in Theoretical Computer Science 5 Cambridge University Press (1989) ISBN 0-521-36062-5 Zbl 0668.54001. p.66
How to Cite This Entry:
Sober space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sober_space&oldid=37249