Namespaces
Variants
Actions

Difference between revisions of "Hardy criterion"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
 
Line 27: Line 27:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G.H. Hardy,  "Some theorems connected with Abel's theorem on the continuity of power series"  ''Proc. London. Math. Soc. (2)'' , '''4'''  (1907)  pp. 247–265</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  G.H. Hardy,  "Some theorems connected with Abel's theorem on the continuity of power series"  ''Proc. London. Math. Soc. (2)'' , '''4'''  (1907)  pp. 247–265 {{ZBL|37.0429.01}}</TD></TR>
 +
</table>
  
 
====Comments====
 
====Comments====
This criterion can be proved using the [[Euler–MacLaurin formula|Euler–MacLaurin formula]] (cf. the proof of Thm. 3.42 in [[#References|[a1]]]).
+
This criterion can be proved using the [[Euler–MacLaurin formula]] (cf. the proof of Thm. 3.42 in [[#References|[a1]]]).
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Rudin,   "Principles of mathematical analysis" , McGraw-Hill  (1976)  pp. 107–108</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Rudin, "Principles of mathematical analysis" , McGraw-Hill  (1976)  pp. 107–108</TD></TR>
 +
</table>

Latest revision as of 07:38, 1 November 2023


for uniform convergence of series of functions

If a sequence of real-valued functions $ a _ {n} ( x) $, $ n = 1, 2 \dots $ is monotone for every $ x \in E $, where $ E $ is a certain set, and converges uniformly to zero on $ E $, and if the sequence of partial sums of a series $ \sum _ {n = 1 } ^ \infty b _ {n} ( x) $ is bounded on $ E $( the functions $ b _ {n} ( x) $ may take complex values), then the series $ \sum _ {n = 1 } ^ \infty a _ {n} ( x) b _ {n} ( x) $ converges uniformly on $ E $.

This criterion was established by G.H. Hardy [1].

References

[1] G.H. Hardy, "Some theorems connected with Abel's theorem on the continuity of power series" Proc. London. Math. Soc. (2) , 4 (1907) pp. 247–265 Zbl 37.0429.01

Comments

This criterion can be proved using the Euler–MacLaurin formula (cf. the proof of Thm. 3.42 in [a1]).

References

[a1] W. Rudin, "Principles of mathematical analysis" , McGraw-Hill (1976) pp. 107–108
How to Cite This Entry:
Hardy criterion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hardy_criterion&oldid=47175
This article was adapted from an original article by L.D. Kudryavtsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article