Namespaces
Variants
Actions

Difference between revisions of "Hardy criterion"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
<!--
 +
h0463301.png
 +
$#A+1 = 10 n = 0
 +
$#C+1 = 10 : ~/encyclopedia/old_files/data/H046/H.0406330 Hardy criterion
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''for uniform convergence of series of functions''
 
''for uniform convergence of series of functions''
  
If a sequence of real-valued functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046330/h0463301.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046330/h0463302.png" /> is monotone for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046330/h0463303.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046330/h0463304.png" /> is a certain set, and converges uniformly to zero on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046330/h0463305.png" />, and if the sequence of partial sums of a series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046330/h0463306.png" /> is bounded on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046330/h0463307.png" /> (the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046330/h0463308.png" /> may take complex values), then the series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046330/h0463309.png" /> converges uniformly on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046330/h04633010.png" />.
+
If a sequence of real-valued functions $  a _ {n} ( x) $,
 +
$  n = 1, 2 \dots $
 +
is monotone for every $  x \in E $,  
 +
where $  E $
 +
is a certain set, and converges uniformly to zero on $  E $,  
 +
and if the sequence of partial sums of a series $  \sum _ {n = 1 }  ^  \infty  b _ {n} ( x) $
 +
is bounded on $  E $(
 +
the functions $  b _ {n} ( x) $
 +
may take complex values), then the series $  \sum _ {n = 1 }  ^  \infty  a _ {n} ( x) b _ {n} ( x) $
 +
converges uniformly on $  E $.
  
 
This criterion was established by G.H. Hardy [[#References|[1]]].
 
This criterion was established by G.H. Hardy [[#References|[1]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G.H. Hardy,  "Some theorems connected with Abel's theorem on the continuity of power series"  ''Proc. London. Math. Soc. (2)'' , '''4'''  (1907)  pp. 247–265</TD></TR></table>
+
<table>
 
+
<TR><TD valign="top">[1]</TD> <TD valign="top">  G.H. Hardy,  "Some theorems connected with Abel's theorem on the continuity of power series"  ''Proc. London. Math. Soc. (2)'' , '''4'''  (1907)  pp. 247–265 {{ZBL|37.0429.01}}</TD></TR>
 
+
</table>
  
 
====Comments====
 
====Comments====
This criterion can be proved using the [[Euler–MacLaurin formula|Euler–MacLaurin formula]] (cf. the proof of Thm. 3.42 in [[#References|[a1]]]).
+
This criterion can be proved using the [[Euler–MacLaurin formula]] (cf. the proof of Thm. 3.42 in [[#References|[a1]]]).
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Rudin,   "Principles of mathematical analysis" , McGraw-Hill  (1976)  pp. 107–108</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Rudin, "Principles of mathematical analysis" , McGraw-Hill  (1976)  pp. 107–108</TD></TR>
 +
</table>

Latest revision as of 07:38, 1 November 2023


for uniform convergence of series of functions

If a sequence of real-valued functions $ a _ {n} ( x) $, $ n = 1, 2 \dots $ is monotone for every $ x \in E $, where $ E $ is a certain set, and converges uniformly to zero on $ E $, and if the sequence of partial sums of a series $ \sum _ {n = 1 } ^ \infty b _ {n} ( x) $ is bounded on $ E $( the functions $ b _ {n} ( x) $ may take complex values), then the series $ \sum _ {n = 1 } ^ \infty a _ {n} ( x) b _ {n} ( x) $ converges uniformly on $ E $.

This criterion was established by G.H. Hardy [1].

References

[1] G.H. Hardy, "Some theorems connected with Abel's theorem on the continuity of power series" Proc. London. Math. Soc. (2) , 4 (1907) pp. 247–265 Zbl 37.0429.01

Comments

This criterion can be proved using the Euler–MacLaurin formula (cf. the proof of Thm. 3.42 in [a1]).

References

[a1] W. Rudin, "Principles of mathematical analysis" , McGraw-Hill (1976) pp. 107–108
How to Cite This Entry:
Hardy criterion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hardy_criterion&oldid=11277
This article was adapted from an original article by L.D. Kudryavtsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article