Namespaces
Variants
Actions

Difference between revisions of "Gray map"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Start article: Gray code)
 
m (isbn)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 
{{TEX|done}}{{MSC|94B60}}
 
{{TEX|done}}{{MSC|94B60}}
  
A map from $\mathbf{Z}_4$ to $\mathbf{F}_2^2$, extended in the obvious way to $\mathbf{Z}_4^n$ and $\mathbf{F}_2^n$ which maps [[Lee distance]] to [[Hamming distance]].  Explicitly,
+
A map from $\mathbf{Z}_4$ to $\mathbf{F}_2^2$, extended in the obvious way to $\mathbf{Z}_4^n$ and $\mathbf{F}_2^n$, which maps [[Lee distance]] to [[Hamming distance]].  Explicitly,
 
$$
 
$$
 
0 \mapsto 00 \ ,\ \  1 \mapsto 01 \ ,\ \  2 \mapsto 11 \ ,\ \  3 \mapsto 10 \ .
 
0 \mapsto 00 \ ,\ \  1 \mapsto 01 \ ,\ \  2 \mapsto 11 \ ,\ \  3 \mapsto 10 \ .
Line 9: Line 9:
  
 
==References==
 
==References==
* Richard E. Blahut, "Algebraic Codes on Lines, Planes, and Curves: An Engineering Approach", Cambridge (2008) ISBN 978-0-521-77194-8 {{ZBL|1147.94001}}
+
* Richard E. Blahut, "Algebraic Codes on Lines, Planes, and Curves: An Engineering Approach", Cambridge (2008) {{ISBN|978-0-521-77194-8}} {{ZBL|1147.94001}}

Latest revision as of 09:29, 28 October 2023

2020 Mathematics Subject Classification: Primary: 94B60 [MSN][ZBL]

A map from $\mathbf{Z}_4$ to $\mathbf{F}_2^2$, extended in the obvious way to $\mathbf{Z}_4^n$ and $\mathbf{F}_2^n$, which maps Lee distance to Hamming distance. Explicitly, $$ 0 \mapsto 00 \ ,\ \ 1 \mapsto 01 \ ,\ \ 2 \mapsto 11 \ ,\ \ 3 \mapsto 10 \ . $$

The map instantiates a Gray code in dimension 2.

References

  • Richard E. Blahut, "Algebraic Codes on Lines, Planes, and Curves: An Engineering Approach", Cambridge (2008) ISBN 978-0-521-77194-8 Zbl 1147.94001
How to Cite This Entry:
Gray map. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gray_map&oldid=51488