|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | An element of a Galois group of a special type. It plays a fundamental role in class field theory. Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f0417601.png" /> is an algebraic extension of a finite field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f0417602.png" />. Then the Frobenius automorphism is the automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f0417603.png" /> defined by the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f0417604.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f0417605.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f0417606.png" /> (the cardinality of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f0417607.png" />). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f0417608.png" /> is a finite extension, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f0417609.png" /> generates the Galois group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176010.png" />. For an infinite extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176012.png" /> is a topological generator of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176013.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176015.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176016.png" />.
| + | <!-- |
| + | f0417601.png |
| + | $#A+1 = 63 n = 0 |
| + | $#C+1 = 63 : ~/encyclopedia/old_files/data/F041/F.0401760 Frobenius automorphism |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176017.png" /> is a local field with a finite residue field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176018.png" />, and that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176019.png" /> is an unramified extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176020.png" />. Then the Frobenius automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176021.png" /> of the extension of residue fields can be uniquely lifted to an automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176022.png" />, called the Frobenius automorphism of the unramified extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176023.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176024.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176025.png" /> be the ring of integers of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176026.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176027.png" /> be a maximal ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176028.png" />. Then the Frobenius automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176029.png" /> is uniquely determined by the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176030.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176031.png" /> for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176032.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176033.png" /> is an arbitrary Galois extension of local fields, then sometimes any automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176034.png" /> that induces a Frobenius automorphism in the sense indicated above on the maximal unramified subextension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176035.png" /> is called a Frobenius automorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176036.png" />.
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176037.png" /> be a Galois extension of global fields, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176038.png" /> be a prime ideal of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176039.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176040.png" /> be some prime ideal of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176041.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176042.png" />. Suppose also that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176043.png" /> is unramified in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176044.png" /> and that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176045.png" /> is the Frobenius automorphism of the unramified extension of local fields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176046.png" />. If one identifies the Galois group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176047.png" /> with the decomposition subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176048.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176049.png" />, one can regard <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176050.png" /> as an element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176051.png" />. This element is called the Frobenius automorphism corresponding to the prime ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176052.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176053.png" /> is a finite extension, then, according to the Chebotarev density theorem, for any automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176054.png" /> there is an infinite number of prime ideals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176055.png" />, unramified in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176056.png" />, such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176057.png" />. For an Abelian extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176058.png" />, the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176059.png" /> depends only on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176060.png" />. In this case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176061.png" /> is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176062.png" /> and is called the Artin symbol of the prime ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041760/f04176063.png" />.
| + | An element of a Galois group of a special type. It plays a fundamental role in class field theory. Suppose that $ L $ |
| + | is an algebraic extension of a finite field $ K $. |
| + | Then the Frobenius automorphism is the automorphism $ \phi _ {L/K} $ |
| + | defined by the formula $ \phi _ {L/K} ( a) = a ^ {q} $ |
| + | for all $ a \in L $, |
| + | where $ q = | K | $( |
| + | the cardinality of $ K $). |
| + | If $ L/K $ |
| + | is a finite extension, then $ \phi _ {L/K} $ |
| + | generates the Galois group $ \mathop{\rm Gal} ( L/K) $. |
| + | For an infinite extension $ L/K $, |
| + | $ \phi _ {L/K} $ |
| + | is a topological generator of $ \mathop{\rm Gal} ( L/K) $. |
| + | If $ L \supset E \supset K $ |
| + | and $ [ E: K] < \infty $, |
| + | then $ \phi _ {L/E} = \phi _ {L/K} ^ {[ E: K] } $. |
| + | |
| + | Suppose that $ k $ |
| + | is a local field with a finite residue field $ \overline{k}\; $, |
| + | and that $ K $ |
| + | is an unramified extension of $ k $. |
| + | Then the Frobenius automorphism $ \phi _ {\overline{K}\; / \overline{k}\; } $ |
| + | of the extension of residue fields can be uniquely lifted to an automorphism $ \phi _ {K/k} \in \mathop{\rm Gal} ( K/k) $, |
| + | called the Frobenius automorphism of the unramified extension $ K/k $. |
| + | Let $ | \overline{k}\; | = q $, |
| + | let $ {\mathcal O} _ {K} $ |
| + | be the ring of integers of $ K $, |
| + | and let $ \mathfrak p $ |
| + | be a maximal ideal in $ {\mathcal O} _ {K} $. |
| + | Then the Frobenius automorphism $ \phi _ {K/k} $ |
| + | is uniquely determined by the condition $ \phi _ {K/k} ( a) \equiv a ^ {q} $ |
| + | $ \mathop{\rm mod} \mathfrak p $ |
| + | for every $ a \in {\mathcal O} _ {k} $. |
| + | If $ K/k $ |
| + | is an arbitrary Galois extension of local fields, then sometimes any automorphism $ \phi \in \mathop{\rm Gal} ( K/k) $ |
| + | that induces a Frobenius automorphism in the sense indicated above on the maximal unramified subextension of $ K $ |
| + | is called a Frobenius automorphism of $ K/k $. |
| + | |
| + | Let $ K/k $ |
| + | be a Galois extension of global fields, let $ \mathfrak p $ |
| + | be a prime ideal of $ k $, |
| + | and let $ \mathfrak P $ |
| + | be some prime ideal of $ K $ |
| + | over $ \mathfrak p $. |
| + | Suppose also that $ \mathfrak P $ |
| + | is unramified in $ K/k $ |
| + | and that $ \phi _ {\mathfrak P} \in \mathop{\rm Gal} ( K _ {\mathfrak P} /k _ {\mathfrak p} ) $ |
| + | is the Frobenius automorphism of the unramified extension of local fields $ K _ {\mathfrak P} /k _ {\mathfrak p} $. |
| + | If one identifies the Galois group $ \mathop{\rm Gal} ( K _ {\mathfrak P} /k _ {\mathfrak p} ) $ |
| + | with the decomposition subgroup of $ \mathfrak P $ |
| + | in $ \mathop{\rm Gal} ( K/k) $, |
| + | one can regard $ \phi _ {\mathfrak P} $ |
| + | as an element of $ \mathop{\rm Gal} ( K/k) $. |
| + | This element is called the Frobenius automorphism corresponding to the prime ideal $ \mathfrak P $. |
| + | If $ K/k $ |
| + | is a finite extension, then, according to the Chebotarev density theorem, for any automorphism $ \sigma \in \mathop{\rm Gal} ( K/k) $ |
| + | there is an infinite number of prime ideals $ \mathfrak P $, |
| + | unramified in $ K/k $, |
| + | such that $ \sigma = \phi _ {\mathfrak P} $. |
| + | For an Abelian extension $ K/k $, |
| + | the element $ \phi _ {\mathfrak P} $ |
| + | depends only on $ \mathfrak p $. |
| + | In this case $ \phi _ {\mathfrak P} $ |
| + | is denoted by $ ( \mathfrak p , K/k) $ |
| + | and is called the Artin symbol of the prime ideal $ \mathfrak p $. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Weil, "Basic number theory" , Springer (1974)</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Weil, "Basic number theory" , Springer (1974) {{ZBL|0326.12001}} </TD></TR></table> |
An element of a Galois group of a special type. It plays a fundamental role in class field theory. Suppose that $ L $
is an algebraic extension of a finite field $ K $.
Then the Frobenius automorphism is the automorphism $ \phi _ {L/K} $
defined by the formula $ \phi _ {L/K} ( a) = a ^ {q} $
for all $ a \in L $,
where $ q = | K | $(
the cardinality of $ K $).
If $ L/K $
is a finite extension, then $ \phi _ {L/K} $
generates the Galois group $ \mathop{\rm Gal} ( L/K) $.
For an infinite extension $ L/K $,
$ \phi _ {L/K} $
is a topological generator of $ \mathop{\rm Gal} ( L/K) $.
If $ L \supset E \supset K $
and $ [ E: K] < \infty $,
then $ \phi _ {L/E} = \phi _ {L/K} ^ {[ E: K] } $.
Suppose that $ k $
is a local field with a finite residue field $ \overline{k}\; $,
and that $ K $
is an unramified extension of $ k $.
Then the Frobenius automorphism $ \phi _ {\overline{K}\; / \overline{k}\; } $
of the extension of residue fields can be uniquely lifted to an automorphism $ \phi _ {K/k} \in \mathop{\rm Gal} ( K/k) $,
called the Frobenius automorphism of the unramified extension $ K/k $.
Let $ | \overline{k}\; | = q $,
let $ {\mathcal O} _ {K} $
be the ring of integers of $ K $,
and let $ \mathfrak p $
be a maximal ideal in $ {\mathcal O} _ {K} $.
Then the Frobenius automorphism $ \phi _ {K/k} $
is uniquely determined by the condition $ \phi _ {K/k} ( a) \equiv a ^ {q} $
$ \mathop{\rm mod} \mathfrak p $
for every $ a \in {\mathcal O} _ {k} $.
If $ K/k $
is an arbitrary Galois extension of local fields, then sometimes any automorphism $ \phi \in \mathop{\rm Gal} ( K/k) $
that induces a Frobenius automorphism in the sense indicated above on the maximal unramified subextension of $ K $
is called a Frobenius automorphism of $ K/k $.
Let $ K/k $
be a Galois extension of global fields, let $ \mathfrak p $
be a prime ideal of $ k $,
and let $ \mathfrak P $
be some prime ideal of $ K $
over $ \mathfrak p $.
Suppose also that $ \mathfrak P $
is unramified in $ K/k $
and that $ \phi _ {\mathfrak P} \in \mathop{\rm Gal} ( K _ {\mathfrak P} /k _ {\mathfrak p} ) $
is the Frobenius automorphism of the unramified extension of local fields $ K _ {\mathfrak P} /k _ {\mathfrak p} $.
If one identifies the Galois group $ \mathop{\rm Gal} ( K _ {\mathfrak P} /k _ {\mathfrak p} ) $
with the decomposition subgroup of $ \mathfrak P $
in $ \mathop{\rm Gal} ( K/k) $,
one can regard $ \phi _ {\mathfrak P} $
as an element of $ \mathop{\rm Gal} ( K/k) $.
This element is called the Frobenius automorphism corresponding to the prime ideal $ \mathfrak P $.
If $ K/k $
is a finite extension, then, according to the Chebotarev density theorem, for any automorphism $ \sigma \in \mathop{\rm Gal} ( K/k) $
there is an infinite number of prime ideals $ \mathfrak P $,
unramified in $ K/k $,
such that $ \sigma = \phi _ {\mathfrak P} $.
For an Abelian extension $ K/k $,
the element $ \phi _ {\mathfrak P} $
depends only on $ \mathfrak p $.
In this case $ \phi _ {\mathfrak P} $
is denoted by $ ( \mathfrak p , K/k) $
and is called the Artin symbol of the prime ideal $ \mathfrak p $.
References