|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
| + | <!-- |
| + | c0238201.png |
| + | $#A+1 = 39 n = 0 |
| + | $#C+1 = 39 : ~/encyclopedia/old_files/data/C023/C.0203820 Complete operator |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| A generalized wave operator, i.e. a partially isometric operator defined by | | A generalized wave operator, i.e. a partially isometric operator defined by |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c0238201.png" /></td> </tr></table>
| + | $$ |
| + | W _ {+} ( A _ {2} , A _ {1} ) = s - \lim\limits _ {t \rightarrow x } e ^ {it A _ {2} - it A _ {1} } P _ {1} , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c0238202.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c0238203.png" /> are self-adjoint operators on a separable Hilbert space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c0238204.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c0238205.png" /> is an ortho-projector into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c0238206.png" />, and such that | + | where $ A _ {1} $ |
| + | and $ A _ {2} $ |
| + | are self-adjoint operators on a separable Hilbert space $ H $, |
| + | $ P _ {1} $ |
| + | is an ortho-projector into $ H _ {1,ac} $, |
| + | and such that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c0238207.png" /></td> </tr></table>
| + | $$ |
| + | \{ {W _ {+} ( A _ {2} , A _ {1} ) x } : { |
| + | \| W _ {+} ( A _ {2} , A _ {1} ) x \| = |
| + | \| x \| } \} |
| + | = \ |
| + | H _ {2,ac} . |
| + | $$ |
| | | |
− | Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c0238208.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c0238209.png" />, is the set of all elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c02382010.png" /> that are spectrally absolutely continuous with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c02382011.png" />, i.e. for which the spectral measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c02382012.png" /> of a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c02382013.png" /> is absolutely continuous with respect to the Lebesgue measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c02382014.png" />. | + | Here $ H _ {i,ac} $, |
| + | $ i = 1, 2 $, |
| + | is the set of all elements $ x $ |
| + | that are spectrally absolutely continuous with respect to $ A _ {i} $, |
| + | i.e. for which the spectral measure $ \langle E _ {A _ {i} } ( \mu ) x, x \rangle $ |
| + | of a set $ M $ |
| + | is absolutely continuous with respect to the Lebesgue measure $ \mu $. |
| | | |
− | If the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c02382015.png" />, or the analogously defined operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c02382016.png" />, exists and is complete, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c02382017.png" /> (the parts of the operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c02382018.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c02382019.png" />) are unitarily equivalent. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c02382020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c02382021.png" /> are self-adjoint operators on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c02382022.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c02382023.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c02382024.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c02382025.png" /> is real, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c02382026.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c02382027.png" /> exist and are complete. | + | If the operator $ W _ {+} ( A _ {2} , A _ {1} ) $, |
| + | or the analogously defined operator $ W _ {-} ( A _ {2} , A _ {1} ) $, |
| + | exists and is complete, the $ A _ {i,ac} $( |
| + | the parts of the operators $ A _ {i} $ |
| + | on $ H _ {i,ac} $) |
| + | are unitarily equivalent. If $ A _ {1} $ |
| + | and $ A _ {2} $ |
| + | are self-adjoint operators on $ H $ |
| + | and $ A _ {2} = A _ {1} + c \langle \cdot , f \rangle f $, |
| + | where $ f \in H $ |
| + | and $ c $ |
| + | is real, then $ W _ \pm ( A _ {2} , A _ {1} ) $ |
| + | and $ W _ \pm ( A _ {1} , A _ {2} ) $ |
| + | exist and are complete. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> T. Kato, "Perturbation theory for linear operators" , Springer (1966) pp. Chapt. X Sect. 3</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> T. Kato, "Perturbation theory for linear operators" , Springer (1966) pp. Chapt. X Sect. 3</TD></TR></table> |
− |
| |
− |
| |
| | | |
| ====Comments==== | | ====Comments==== |
− | An ortho-projector is usually called and orthogonal projector in the West. | + | An ortho-projector is usually called an orthogonal projector in the West. |
| | | |
− | An operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c02382028.png" /> is partially isometric if there is a closed linear subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c02382029.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c02382030.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c02382031.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c02382032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c02382033.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c02382034.png" />, the orthogonal complement of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c02382035.png" />; the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c02382036.png" /> is called the initial set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c02382037.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c02382038.png" /> the final set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023820/c02382039.png" />. | + | An operator $ W : H \rightarrow H _ {1} $ |
| + | is partially isometric if there is a closed linear subspace $ M $ |
| + | of $ H $ |
| + | such that $ \| W u \| = \| u \| $ |
| + | for $ u \in M $ |
| + | and $ W v = 0 $ |
| + | for $ v \in M ^ \perp $, |
| + | the orthogonal complement of $ M $; |
| + | the set $ M $ |
| + | is called the initial set of $ W $ |
| + | and $ M _ {1} = W ( M) $ |
| + | the final set of $ W $. |
A generalized wave operator, i.e. a partially isometric operator defined by
$$
W _ {+} ( A _ {2} , A _ {1} ) = s - \lim\limits _ {t \rightarrow x } e ^ {it A _ {2} - it A _ {1} } P _ {1} ,
$$
where $ A _ {1} $
and $ A _ {2} $
are self-adjoint operators on a separable Hilbert space $ H $,
$ P _ {1} $
is an ortho-projector into $ H _ {1,ac} $,
and such that
$$
\{ {W _ {+} ( A _ {2} , A _ {1} ) x } : {
\| W _ {+} ( A _ {2} , A _ {1} ) x \| =
\| x \| } \}
= \
H _ {2,ac} .
$$
Here $ H _ {i,ac} $,
$ i = 1, 2 $,
is the set of all elements $ x $
that are spectrally absolutely continuous with respect to $ A _ {i} $,
i.e. for which the spectral measure $ \langle E _ {A _ {i} } ( \mu ) x, x \rangle $
of a set $ M $
is absolutely continuous with respect to the Lebesgue measure $ \mu $.
If the operator $ W _ {+} ( A _ {2} , A _ {1} ) $,
or the analogously defined operator $ W _ {-} ( A _ {2} , A _ {1} ) $,
exists and is complete, the $ A _ {i,ac} $(
the parts of the operators $ A _ {i} $
on $ H _ {i,ac} $)
are unitarily equivalent. If $ A _ {1} $
and $ A _ {2} $
are self-adjoint operators on $ H $
and $ A _ {2} = A _ {1} + c \langle \cdot , f \rangle f $,
where $ f \in H $
and $ c $
is real, then $ W _ \pm ( A _ {2} , A _ {1} ) $
and $ W _ \pm ( A _ {1} , A _ {2} ) $
exist and are complete.
References
[1] | T. Kato, "Perturbation theory for linear operators" , Springer (1966) pp. Chapt. X Sect. 3 |
An ortho-projector is usually called an orthogonal projector in the West.
An operator $ W : H \rightarrow H _ {1} $
is partially isometric if there is a closed linear subspace $ M $
of $ H $
such that $ \| W u \| = \| u \| $
for $ u \in M $
and $ W v = 0 $
for $ v \in M ^ \perp $,
the orthogonal complement of $ M $;
the set $ M $
is called the initial set of $ W $
and $ M _ {1} = W ( M) $
the final set of $ W $.