Difference between revisions of "Lattice-ordered group"
(Importing text file) |
(gather refs) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | l0576702.png | ||
+ | $#A+1 = 80 n = 0 | ||
+ | $#C+1 = 80 : ~/encyclopedia/old_files/data/L057/L.0507670 Lattice\AAhordered group, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | '' $ l $-group'' | |
− | + | A [[Group|group]] $ G $ | |
+ | on the set of elements of which a partial-order relation $ \leq $ | ||
+ | is defined possessing the properties: 1) $ G $ | ||
+ | is a [[Lattice|lattice]] relative to $ \leq $, | ||
+ | i.e. for any $ x, y \in G $ | ||
+ | there are elements $ x \wedge y $, | ||
+ | $ x \lor y $ | ||
+ | such that $ x \wedge y \leq x, y $ | ||
+ | and $ x \lor y \geq x, y $; | ||
+ | for any $ z \in G $, | ||
+ | $ z \leq x, y $ | ||
+ | implies $ z \leq x \wedge y $, | ||
+ | and for any $ t \in G $ | ||
+ | and $ x, y \leq t $ | ||
+ | one has $ x \lor y \leq t $; | ||
+ | and 2) for any $ a, b, x, y \in G $ | ||
+ | the inequality $ a \leq b $ | ||
+ | implies $ xay \leq xby $. | ||
+ | Similarly, a lattice-ordered group can be defined as an [[Algebraic system|algebraic system]] of signature $ \langle \cdot , {} ^ {- 1} , e, \wedge, \lor \rangle $ | ||
+ | that satisfies the axioms: 3) $ \langle G, \cdot , {} ^ {- 1} , e\rangle $ | ||
+ | is a group; 4) $ \langle G, \lor , \wedge\rangle $ | ||
+ | is a lattice; and 5) $ x( y \lor z) t = xyt \lor xzt $ | ||
+ | and $ x( y \wedge z) t = xyt \wedge xzt $ | ||
+ | for any $ x, y, z, t \in G $. | ||
− | + | The lattice of elements of a lattice-ordered group is distributive (cf. [[Distributive lattice|Distributive lattice]]). The absolute value (respectively, the positive and the negative part) of an element $ x $ | |
+ | is the element $ | x | = x \lor x ^ {- 1} $ (respectively, $ x ^ {+} = x\lor e $ | ||
+ | and $ x ^ {-} = x \wedge e $). | ||
+ | In lattice-ordered groups, the following relations hold: | ||
− | + | $$ | |
+ | x = x ^ {+} x ^ {-} ,\ \ | ||
+ | | x | ^ {- 1} \leq x \leq | x | , | ||
+ | $$ | ||
− | + | $$ | |
+ | | x | = x ^ {+} ( x ^ {-} ) ^ {- 1} ,\ x ^ {+} \wedge ( x ^ {-} ) ^ {- 1 } = e, | ||
+ | $$ | ||
− | + | $$ | |
+ | ( x \lor y) ^ {- 1} = x ^ {- 1} \wedge y ^ {- 1} ,\ \ | ||
+ | ( x \wedge y) ^ {- 1} = x ^ {- 1} \lor y ^ {- 1} . | ||
+ | $$ | ||
− | + | Two elements $ x $ | |
+ | and $ y $ | ||
+ | are called orthogonal if $ | x | \lor | y | = e $. | ||
+ | Orthogonal elements commute. | ||
− | + | A subset $ H $ | |
+ | of an $ l $-group $ G $ | ||
+ | is called an $ l $-subgroup if $ H $ | ||
+ | is a subgroup and a sublattice in $ G $; | ||
+ | an $ l $-subgroup $ H $ | ||
+ | is called an $ l $-ideal of $ G $ | ||
+ | if it is normal and convex in $ G $. | ||
+ | The set of $ l $-subgroups of a lattice-ordered group forms a sublattice of the lattice of all its subgroups. The lattice of $ l $-ideals of a lattice-ordered group is distributive. An $ l $-homomorphism of an $ l $-group $ G $ | ||
+ | into an $ l $-group $ H $ | ||
+ | is a [[Homomorphism|homomorphism]] $ \phi $ | ||
+ | of the group $ G $ | ||
+ | into the group $ H $ | ||
+ | such that | ||
− | + | $$ | |
+ | \phi ( x \lor y) = \phi ( x) \lor \phi ( y) ,\ \ | ||
+ | \phi ( x \wedge y) = \phi ( x) \wedge \phi ( y). | ||
+ | $$ | ||
− | The | + | The kernels of $ l $-homomorphisms are precisely the $ l $-ideals of $ l $-groups. If $ G $ |
+ | is an $ l $-group and $ M \subset G $, | ||
+ | then the set $ M ^ \perp = \{ {x \in G } : {| x | \wedge | m | = e \textrm{ for every } m \in M } \} $ | ||
+ | is a convex $ l $-subgroup in $ G $ (cf. [[Convex subgroup|Convex subgroup]]). | ||
− | + | The group $ A( L) $ | |
− | + | of one-to-one order-preserving mappings of a totally ordered set $ L $ | |
− | + | onto itself is an $ l $-group (if for $ f, g \in A( L) $ | |
− | + | one assumes that $ f \leq g $ | |
− | + | if and only if $ f( \alpha ) \leq g( \alpha ) $ | |
− | + | for all $ \alpha \in L $). | |
+ | Every $ l $-group is $ l $-isomorphic to an $ l $-subgroup of the lattice-ordered group $ A( L) $ | ||
+ | for a suitable set $ L $. | ||
+ | The class of all lattice-ordered groups is a variety of signature $ \langle \cdot , {} ^ {- 1} , e, \wedge, \lor\rangle $ (cf. [[Variety of groups|Variety of groups]]). Its most important subvariety is the class of lattice-ordered groups that can be approximated by totally ordered groups (the class of representable $ l $-groups, cf. also [[Totally ordered group|Totally ordered group]]). | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Anderson, T. Feil, "Lattice-ordered groups. An introduction" , Reidel (1988)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A.M.W. Glass (ed.) W.Ch. Holland (ed.) , ''Lattice-ordered groups. Advances and techniques'' , Kluwer (1989)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J. Martinez (ed.) , ''Ordered algebraic structures'' , Kluwer (1989)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> G. Birkhoff, "Lattice theory" , ''Colloq. Publ.'' , '''25''' , Amer. Math. Soc. (1973)</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> L. Fuchs, "Partially ordered algebraic systems" , Pergamon (1963)</TD></TR> | ||
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Anderson, T. Feil, "Lattice-ordered groups. An introduction" , Reidel (1988)</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> A.M.W. Glass (ed.) W.Ch. Holland (ed.) , ''Lattice-ordered groups. Advances and techniques'' , Kluwer (1989)</TD></TR> | ||
+ | <TR><TD valign="top">[a3]</TD> <TD valign="top"> J. Martinez (ed.) , ''Ordered algebraic structures'' , Kluwer (1989)</TD></TR> | ||
+ | </table> |
Latest revision as of 08:45, 8 October 2023
$ l $-group
A group $ G $ on the set of elements of which a partial-order relation $ \leq $ is defined possessing the properties: 1) $ G $ is a lattice relative to $ \leq $, i.e. for any $ x, y \in G $ there are elements $ x \wedge y $, $ x \lor y $ such that $ x \wedge y \leq x, y $ and $ x \lor y \geq x, y $; for any $ z \in G $, $ z \leq x, y $ implies $ z \leq x \wedge y $, and for any $ t \in G $ and $ x, y \leq t $ one has $ x \lor y \leq t $; and 2) for any $ a, b, x, y \in G $ the inequality $ a \leq b $ implies $ xay \leq xby $. Similarly, a lattice-ordered group can be defined as an algebraic system of signature $ \langle \cdot , {} ^ {- 1} , e, \wedge, \lor \rangle $ that satisfies the axioms: 3) $ \langle G, \cdot , {} ^ {- 1} , e\rangle $ is a group; 4) $ \langle G, \lor , \wedge\rangle $ is a lattice; and 5) $ x( y \lor z) t = xyt \lor xzt $ and $ x( y \wedge z) t = xyt \wedge xzt $ for any $ x, y, z, t \in G $.
The lattice of elements of a lattice-ordered group is distributive (cf. Distributive lattice). The absolute value (respectively, the positive and the negative part) of an element $ x $ is the element $ | x | = x \lor x ^ {- 1} $ (respectively, $ x ^ {+} = x\lor e $ and $ x ^ {-} = x \wedge e $). In lattice-ordered groups, the following relations hold:
$$ x = x ^ {+} x ^ {-} ,\ \ | x | ^ {- 1} \leq x \leq | x | , $$
$$ | x | = x ^ {+} ( x ^ {-} ) ^ {- 1} ,\ x ^ {+} \wedge ( x ^ {-} ) ^ {- 1 } = e, $$
$$ ( x \lor y) ^ {- 1} = x ^ {- 1} \wedge y ^ {- 1} ,\ \ ( x \wedge y) ^ {- 1} = x ^ {- 1} \lor y ^ {- 1} . $$
Two elements $ x $ and $ y $ are called orthogonal if $ | x | \lor | y | = e $. Orthogonal elements commute.
A subset $ H $ of an $ l $-group $ G $ is called an $ l $-subgroup if $ H $ is a subgroup and a sublattice in $ G $; an $ l $-subgroup $ H $ is called an $ l $-ideal of $ G $ if it is normal and convex in $ G $. The set of $ l $-subgroups of a lattice-ordered group forms a sublattice of the lattice of all its subgroups. The lattice of $ l $-ideals of a lattice-ordered group is distributive. An $ l $-homomorphism of an $ l $-group $ G $ into an $ l $-group $ H $ is a homomorphism $ \phi $ of the group $ G $ into the group $ H $ such that
$$ \phi ( x \lor y) = \phi ( x) \lor \phi ( y) ,\ \ \phi ( x \wedge y) = \phi ( x) \wedge \phi ( y). $$
The kernels of $ l $-homomorphisms are precisely the $ l $-ideals of $ l $-groups. If $ G $ is an $ l $-group and $ M \subset G $, then the set $ M ^ \perp = \{ {x \in G } : {| x | \wedge | m | = e \textrm{ for every } m \in M } \} $ is a convex $ l $-subgroup in $ G $ (cf. Convex subgroup).
The group $ A( L) $ of one-to-one order-preserving mappings of a totally ordered set $ L $ onto itself is an $ l $-group (if for $ f, g \in A( L) $ one assumes that $ f \leq g $ if and only if $ f( \alpha ) \leq g( \alpha ) $ for all $ \alpha \in L $). Every $ l $-group is $ l $-isomorphic to an $ l $-subgroup of the lattice-ordered group $ A( L) $ for a suitable set $ L $.
The class of all lattice-ordered groups is a variety of signature $ \langle \cdot , {} ^ {- 1} , e, \wedge, \lor\rangle $ (cf. Variety of groups). Its most important subvariety is the class of lattice-ordered groups that can be approximated by totally ordered groups (the class of representable $ l $-groups, cf. also Totally ordered group).
References
[1] | G. Birkhoff, "Lattice theory" , Colloq. Publ. , 25 , Amer. Math. Soc. (1973) |
[2] | L. Fuchs, "Partially ordered algebraic systems" , Pergamon (1963) |
[a1] | M. Anderson, T. Feil, "Lattice-ordered groups. An introduction" , Reidel (1988) |
[a2] | A.M.W. Glass (ed.) W.Ch. Holland (ed.) , Lattice-ordered groups. Advances and techniques , Kluwer (1989) |
[a3] | J. Martinez (ed.) , Ordered algebraic structures , Kluwer (1989) |
Lattice-ordered group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lattice-ordered_group&oldid=15070