Namespaces
Variants
Actions

Difference between revisions of "Albert algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (link)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
{{TEX|done}}
 
{{MSC|17C40}}
 
{{MSC|17C40}}
  
Line 10: Line 11:
  
 
==References==
 
==References==
* A. V. Mikhalev, Gunter F. Pilz (2002) "The Concise Handbook of Algebra", (Springer) ISBN 0792370724, page 346.
+
* A. V. Mikhalev, Gunter F. Pilz (2002) "The Concise Handbook of Algebra", (Springer) {{ISBN|0792370724}}, page 346.
* Richard D. Schafer (1995) [1966], An Introduction to Nonassociative Algebras (Dover) ISBN 0-486-68813-5, page 102.
+
* Richard D. Schafer (1995) [1966], An Introduction to Nonassociative Algebras (Dover) {{ISBN|0-486-68813-5}}, page 102.

Latest revision as of 13:55, 7 October 2023

2020 Mathematics Subject Classification: Primary: 17C40 [MSN][ZBL]

The set of 3×3 self-adjoint matrices over the octonions with binary operation $$ x \star y = \frac12 (x \cdot y + y \cdot x) \,, $$ where $\cdot$ denotes matrix multiplication.

The operation is commutative but not associative. It is an example of an exceptional Jordan algebra. Because most other exceptional Jordan algebras are constructed using this one, it is often referred to as "the" exceptional Jordan algebra.

References

  • A. V. Mikhalev, Gunter F. Pilz (2002) "The Concise Handbook of Algebra", (Springer) ISBN 0792370724, page 346.
  • Richard D. Schafer (1995) [1966], An Introduction to Nonassociative Algebras (Dover) ISBN 0-486-68813-5, page 102.
How to Cite This Entry:
Albert algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Albert_algebra&oldid=30386