Namespaces
Variants
Actions

Difference between revisions of "Universal normal algorithm"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (gather refs)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
A [[Normal algorithm|normal algorithm]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095690/u0956901.png" /> which in a sense (made precise below) models the work of any normal algorithm over the alphabet <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095690/u0956902.png" />. A normal algorithm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095690/u0956903.png" /> over the alphabet <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095690/u0956904.png" /> (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095690/u0956905.png" /> does not contain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095690/u0956906.png" />) is called universal for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095690/u0956907.png" /> if for every normal algorithm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095690/u0956908.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095690/u0956909.png" /> and any word <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095690/u09569010.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095690/u09569011.png" />,
+
<!--
 +
u0956901.png
 +
$#A+1 = 18 n = 0
 +
$#C+1 = 18 : ~/encyclopedia/old_files/data/U095/U.0905690 Universal normal algorithm
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095690/u09569012.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095690/u09569013.png" /> is a representation of the normal algorithm (cf. [[Algorithm, representation of an|Algorithm, representation of an]]), and the symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095690/u09569014.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095690/u09569015.png" /> plays the role of dividing sign. The existence of a universal normal algorithm was proved by A.A. Markov (cf. [[#References|[1]]]). An important characteristic of a universal normal algorithm is its complexity, i.e. the length of its representation (cf. also [[Algorithm, complexity of description of an|Algorithm, complexity of description of an]]). A universal normal algorithm of minimal complexity as a function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095690/u09569016.png" /> (the number of symbols in the alphabet <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095690/u09569017.png" />) has been obtained, differing only by an additive constant from lower and upper bounds of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095690/u09569018.png" /> (cf. [[#References|[2]]]).
+
A [[Normal algorithm|normal algorithm]] $  \mathfrak B $
 +
which in a sense (made precise below) models the work of any normal algorithm over the alphabet  $  A = \{ a _ {1} \dots a _ {n} \} $.  
 +
A normal algorithm $  \mathfrak B $
 +
over the alphabet  $  B \supset A \cup \{ \alpha , \beta , \gamma , \delta \} $(
 +
where  $  A $
 +
does not contain  $  \alpha , \beta , \gamma , \delta $)  
 +
is called universal for  $  A $
 +
if for every normal algorithm $  \mathfrak A $
 +
over  $  A $
 +
and any word  $  P $
 +
over  $  A $,
  
====References====
+
$$
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.A. Markov,  "Theory of algorithms" , Israel Program Sci. Transl. (1961(Translated from Russian) (Also: Trudy Mat. Inst. Steklov. 42 (1954))</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.G. Zharov,  "The complexity of a universal normal algorithm" , ''Theory of algorithms and mathematical logic'' , Moscow  (1974)  pp. 34–54  (In Russian)</TD></TR></table>
+
\mathfrak B ( \mathfrak ^ {I} \delta P\simeq \mathfrak A ( P).
 
+
$$
 
 
 
 
====Comments====
 
  
 +
Here  $  \mathfrak A  ^ {I} $
 +
is a representation of the normal algorithm (cf. [[Algorithm, representation of an|Algorithm, representation of an]]), and the symbol  $  \delta $
 +
in  $  B $
 +
plays the role of dividing sign. The existence of a universal normal algorithm was proved by A.A. Markov (cf. [[#References|[1]]]). An important characteristic of a universal normal algorithm is its complexity, i.e. the length of its representation (cf. also [[Algorithm, complexity of description of an|Algorithm, complexity of description of an]]). A universal normal algorithm of minimal complexity as a function of  $  n $(
 +
the number of symbols in the alphabet  $  A $)
 +
has been obtained, differing only by an additive constant from lower and upper bounds of the form  $  5n + C $(
 +
cf. [[#References|[2]]]).
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A.A. Markov,  N.M. [N.M. Nagornyi] Nagorny,  "The theory of algorithms" , Kluwer  (1988)  pp. Chapt. V  (Translated from Russian)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.A. Markov,  "Theory of algorithms" , Israel Program Sci. Transl.  (1961)  (Translated from Russian)  (Also: Trudy Mat. Inst. Steklov. 42 (1954))</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.G. Zharov,  "The complexity of a universal normal algorithm" , ''Theory of algorithms and mathematical logic'' , Moscow  (1974)  pp. 34–54  (In Russian)</TD></TR>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  A.A. Markov,  N.M. [N.M. Nagornyi] Nagorny,  "The theory of algorithms" , Kluwer  (1988)  pp. Chapt. V  (Translated from Russian)</TD></TR></table>

Latest revision as of 07:01, 27 May 2023


A normal algorithm $ \mathfrak B $ which in a sense (made precise below) models the work of any normal algorithm over the alphabet $ A = \{ a _ {1} \dots a _ {n} \} $. A normal algorithm $ \mathfrak B $ over the alphabet $ B \supset A \cup \{ \alpha , \beta , \gamma , \delta \} $( where $ A $ does not contain $ \alpha , \beta , \gamma , \delta $) is called universal for $ A $ if for every normal algorithm $ \mathfrak A $ over $ A $ and any word $ P $ over $ A $,

$$ \mathfrak B ( \mathfrak A ^ {I} \delta P) \simeq \mathfrak A ( P). $$

Here $ \mathfrak A ^ {I} $ is a representation of the normal algorithm (cf. Algorithm, representation of an), and the symbol $ \delta $ in $ B $ plays the role of dividing sign. The existence of a universal normal algorithm was proved by A.A. Markov (cf. [1]). An important characteristic of a universal normal algorithm is its complexity, i.e. the length of its representation (cf. also Algorithm, complexity of description of an). A universal normal algorithm of minimal complexity as a function of $ n $( the number of symbols in the alphabet $ A $) has been obtained, differing only by an additive constant from lower and upper bounds of the form $ 5n + C $( cf. [2]).

References

[1] A.A. Markov, "Theory of algorithms" , Israel Program Sci. Transl. (1961) (Translated from Russian) (Also: Trudy Mat. Inst. Steklov. 42 (1954))
[2] V.G. Zharov, "The complexity of a universal normal algorithm" , Theory of algorithms and mathematical logic , Moscow (1974) pp. 34–54 (In Russian)
[a1] A.A. Markov, N.M. [N.M. Nagornyi] Nagorny, "The theory of algorithms" , Kluwer (1988) pp. Chapt. V (Translated from Russian)
How to Cite This Entry:
Universal normal algorithm. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Universal_normal_algorithm&oldid=14613
This article was adapted from an original article by S.N. Artemov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article