Namespaces
Variants
Actions

Difference between revisions of "Lamé curve"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX)
(gather refs)
 
Line 4: Line 4:
 
$$\left(\frac xa\right)^m+\left(\frac yb\right)^m=1,$$
 
$$\left(\frac xa\right)^m+\left(\frac yb\right)^m=1,$$
  
where $m=p/q$, $p$ and $q$ are coprime numbers, $a>0$ and $b>0$. The order of Lamé's curve is $pq$ if $m>0$ and $2pq$ if $m<0$. If $m=1$, Lamé's curve is a straight line, if $m=2$ it is an ellipse, and if $m=2/3$ and $a=b$ it is an [[Astroid|astroid]]. The Lamé curves are named after G. Lamé, who considered them in 1818.
+
where $m=p/q$, $p$ and $q$ are coprime numbers, $a>0$ and $b>0$. The order of Lamé's curve is $pq$ if $m>0$ and $2pq$ if $m<0$. If $m=1$, Lamé's curve is a straight line, if $m=2$ it is an ellipse, and if $m=2/3$ and $a=b$ it is an [[astroid]]. The Lamé curves are named after G. Lamé, who considered them in 1818.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.A. Savelov,  "Planar curves" , Moscow  (1960)  (In Russian)</TD></TR></table>
+
<table>
 
+
<TR><TD valign="top">[1]</TD> <TD valign="top">  A.A. Savelov,  "Planar curves" , Moscow  (1960)  (In Russian)</TD></TR>
 
+
<TR><TD valign="top">[a1]</TD> <TD valign="top">  K. Fladt,  "Analytische Geometrie spezieller ebener Kurven" , Akad. Verlagsgesell.  (1962)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  F. Gomes Teixeira,  "Traité des courbes" , '''1–3''' , Chelsea, reprint  (1971)</TD></TR>
 
+
</table>
====Comments====
 
 
 
 
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  K. Fladt,  "Analytische Geometrie spezieller ebener Kurven" , Akad. Verlagsgesell.  (1962)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  F. Gomes Teixeira,  "Traité des courbes" , '''1–3''' , Chelsea, reprint  (1971)</TD></TR></table>
 

Latest revision as of 18:29, 4 May 2023

A plane algebraic curve whose equation in rectangular Cartesian coordinates has the form

$$\left(\frac xa\right)^m+\left(\frac yb\right)^m=1,$$

where $m=p/q$, $p$ and $q$ are coprime numbers, $a>0$ and $b>0$. The order of Lamé's curve is $pq$ if $m>0$ and $2pq$ if $m<0$. If $m=1$, Lamé's curve is a straight line, if $m=2$ it is an ellipse, and if $m=2/3$ and $a=b$ it is an astroid. The Lamé curves are named after G. Lamé, who considered them in 1818.

References

[1] A.A. Savelov, "Planar curves" , Moscow (1960) (In Russian)
[a1] K. Fladt, "Analytische Geometrie spezieller ebener Kurven" , Akad. Verlagsgesell. (1962)
[a2] F. Gomes Teixeira, "Traité des courbes" , 1–3 , Chelsea, reprint (1971)
How to Cite This Entry:
Lamé curve. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lam%C3%A9_curve&oldid=32042
This article was adapted from an original article by D.D. Sokolov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article