|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | Suppose that domains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h0482801.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h0482802.png" /> lie in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h0482803.png" />-plane and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h0482804.png" />-plane, respectively, and suppose they have at least three boundary points each; let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h0482805.png" /> be a holomorphic function in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h0482806.png" /> taking values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h0482807.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h0482808.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h0482809.png" /> be the line elements of the hyperbolic metric of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828011.png" /> at points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828013.png" />, respectively. The following inequality will then be true:
| + | <!-- |
| + | h0482801.png |
| + | $#A+1 = 60 n = 0 |
| + | $#C+1 = 60 : ~/encyclopedia/old_files/data/H048/H.0408280 Hyperbolic metric, principle of the |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828014.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | At any point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828015.png" /> equality holds if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828016.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828017.png" />, where the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828018.png" /> maps <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828019.png" /> conformally onto the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828020.png" />, while the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828021.png" /> maps <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828022.png" /> conformally onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828023.png" />. The principle of the hyperbolic metric generalizes the [[Schwarz lemma|Schwarz lemma]] to multiply-connected domains in which a hyperbolic metric can be defined.
| + | Suppose that domains $ D $ |
| + | and $ G $ |
| + | lie in the $ z $- |
| + | plane and $ w $- |
| + | plane, respectively, and suppose they have at least three boundary points each; let $ w = f( z) $ |
| + | be a holomorphic function in $ D $ |
| + | taking values in $ G $, |
| + | and let $ d \sigma _ {z} $ |
| + | and $ d \sigma _ {w} $ |
| + | be the line elements of the hyperbolic metric of $ D $ |
| + | and $ G $ |
| + | at points $ z $ |
| + | and $ w = f( z) $, |
| + | respectively. The following inequality will then be true: |
| | | |
− | In formulating the principle of the hyperbolic metric it is permissible to replace the assumption on the analyticity of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828024.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828025.png" /> by a more general assumption, i.e. that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828026.png" /> is an analytic function which is defined in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828027.png" /> by any one of its elements and which can be analytically continued in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828028.png" /> along any path.
| + | $$ |
| + | d \sigma _ {w} \leq d \sigma _ {z} . |
| + | $$ |
| | | |
− | The same principle can also be formulated about the behaviour of the hyperbolic length of curves, the hyperbolic distance or the hyperbolic area for a given mapping. In fact, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828029.png" /> is a rectifiable curve in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828030.png" />, then (for the meaning of the symbols see [[Hyperbolic metric|Hyperbolic metric]])
| + | At any point $ z _ {0} \in D $ |
| + | equality holds if $ f( z) \equiv w [ \zeta ( z)] $ |
| + | in $ D $, |
| + | where the function $ \zeta = \zeta ( z) $ |
| + | maps $ D $ |
| + | conformally onto the disc $ E = \{ \zeta : {| \zeta | < 1 } \} $, |
| + | while the function $ w = w ( \zeta ) $ |
| + | maps $ E $ |
| + | conformally onto $ G $. |
| + | The principle of the hyperbolic metric generalizes the [[Schwarz lemma|Schwarz lemma]] to multiply-connected domains in which a hyperbolic metric can be defined. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828031.png" /></td> </tr></table>
| + | In formulating the principle of the hyperbolic metric it is permissible to replace the assumption on the analyticity of the function $ f( z) $ |
| + | in $ D $ |
| + | by a more general assumption, i.e. that $ f( z) $ |
| + | is an analytic function which is defined in $ D $ |
| + | by any one of its elements and which can be analytically continued in $ D $ |
| + | along any path. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828033.png" /> are two points in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828034.png" />, then
| + | The same principle can also be formulated about the behaviour of the hyperbolic length of curves, the hyperbolic distance or the hyperbolic area for a given mapping. In fact, if $ L $ |
| + | is a rectifiable curve in $ D $, |
| + | then (for the meaning of the symbols see [[Hyperbolic metric|Hyperbolic metric]]) |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828035.png" /></td> </tr></table>
| + | $$ |
| + | \mu _ {G} ( f ( L)) \leq \mu _ {D} ( L). |
| + | $$ |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828036.png" /> is a domain in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828037.png" />, then | + | If $ z _ {1} $ |
| + | and $ z _ {2} $ |
| + | are two points in $ D $, |
| + | then |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828038.png" /></td> </tr></table>
| + | $$ |
| + | r _ {G} ( f ( z _ {1} ), f ( z _ {2} )) \leq \ |
| + | r _ {D} ( z _ {1} , z _ {2} ). |
| + | $$ |
| | | |
− | Equality in these inequalities holds only in the above-mentioned case.
| + | If $ B $ |
| + | is a domain in $ D $, |
| + | then |
| | | |
− | The above result as applied to the hyperbolic distance shows that under the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828039.png" /> the image of the hyperbolic disc with centre at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828040.png" /> is contained in the hyperbolic disc with its centre at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828041.png" /> of the same hyperbolic radius.
| + | $$ |
| + | \Delta _ {G} ( f ( B)) \leq \Delta _ {D} ( B). |
| + | $$ |
| | | |
− | This result is a generalization to the case of multiply-connected domains of the following fact in the theory of [[Conformal mapping|conformal mapping]] (the invariant form of Schwarz' lemma): Under the mapping of the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828042.png" /> by a regular function
| + | Equality in these inequalities holds only in the above-mentioned case. |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828043.png" /></td> </tr></table>
| |
− | | |
− | in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828044.png" />, the hyperbolic distance between the images of the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828045.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828046.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828047.png" /> does not exceed the hyperbolic distance between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828048.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828049.png" />, and is equal to that distance only for a bilinear transformation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828050.png" /> onto itself.
| |
| | | |
− | The principle of the hyperbolic metric is connected with the [[Lindelöf principle|Lindelöf principle]] as follows. If the domains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828051.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828052.png" /> have a Green function and are simply connected, both these principles are identical. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828053.png" /> is simply connected, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828054.png" /> is multiply connected, the principle of the hyperbolic metric yields a more precise estimate of the domain containing the image of a hyperbolic disc in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828055.png" />, defined by an inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828056.png" /> under the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828057.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828058.png" /> denotes the Green function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828059.png" /> with logarithmic pole at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048280/h04828060.png" />. The principle of the hyperbolic metric is also applicable to cases in which Lindelöf's principle does not apply — e.g. to domains having at least three boundary points but not having a Green function. | + | The above result as applied to the hyperbolic distance shows that under the mapping $ w = f( z) $ |
| + | the image of the hyperbolic disc with centre at the point $ z _ {0} \in D $ |
| + | is contained in the hyperbolic disc with its centre at the point $ w _ {0} = f( z _ {0} ) $ |
| + | of the same hyperbolic radius. |
| | | |
| + | This result is a generalization to the case of multiply-connected domains of the following fact in the theory of [[Conformal mapping|conformal mapping]] (the invariant form of Schwarz' lemma): Under the mapping of the disc $ E $ |
| + | by a regular function |
| | | |
| + | $$ |
| + | w = f ( z),\ \ |
| + | | f ( z) | < 1 |
| + | $$ |
| | | |
− | ====Comments====
| + | in $ E $, |
| + | the hyperbolic distance between the images of the points $ z _ {1} $ |
| + | and $ z _ {2} $ |
| + | of $ E $ |
| + | does not exceed the hyperbolic distance between $ z _ {1} $ |
| + | and $ z _ {2} $, |
| + | and is equal to that distance only for a bilinear transformation of $ E $ |
| + | onto itself. |
| | | |
| + | The principle of the hyperbolic metric is connected with the [[Lindelöf principle|Lindelöf principle]] as follows. If the domains $ D $ |
| + | and $ G $ |
| + | have a Green function and are simply connected, both these principles are identical. If $ D $ |
| + | is simply connected, while $ G $ |
| + | is multiply connected, the principle of the hyperbolic metric yields a more precise estimate of the domain containing the image of a hyperbolic disc in $ D $, |
| + | defined by an inequality $ g _ {D} ( z, z _ {0} ) > \lambda $ |
| + | under the mapping $ w = f( z) $, |
| + | where $ g _ {D} ( z, z _ {0} ) $ |
| + | denotes the Green function of $ D $ |
| + | with logarithmic pole at $ z _ {0} \in D $. |
| + | The principle of the hyperbolic metric is also applicable to cases in which Lindelöf's principle does not apply — e.g. to domains having at least three boundary points but not having a Green function. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L.V. Ahlfors, "Conformal invariants. Topics in geometric function theory" , McGraw-Hill (1973)</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> L.V. Ahlfors, "Conformal invariants. Topics in geometric function theory" , McGraw-Hill (1973)</TD></TR> |
| + | </table> |
Suppose that domains $ D $
and $ G $
lie in the $ z $-
plane and $ w $-
plane, respectively, and suppose they have at least three boundary points each; let $ w = f( z) $
be a holomorphic function in $ D $
taking values in $ G $,
and let $ d \sigma _ {z} $
and $ d \sigma _ {w} $
be the line elements of the hyperbolic metric of $ D $
and $ G $
at points $ z $
and $ w = f( z) $,
respectively. The following inequality will then be true:
$$
d \sigma _ {w} \leq d \sigma _ {z} .
$$
At any point $ z _ {0} \in D $
equality holds if $ f( z) \equiv w [ \zeta ( z)] $
in $ D $,
where the function $ \zeta = \zeta ( z) $
maps $ D $
conformally onto the disc $ E = \{ \zeta : {| \zeta | < 1 } \} $,
while the function $ w = w ( \zeta ) $
maps $ E $
conformally onto $ G $.
The principle of the hyperbolic metric generalizes the Schwarz lemma to multiply-connected domains in which a hyperbolic metric can be defined.
In formulating the principle of the hyperbolic metric it is permissible to replace the assumption on the analyticity of the function $ f( z) $
in $ D $
by a more general assumption, i.e. that $ f( z) $
is an analytic function which is defined in $ D $
by any one of its elements and which can be analytically continued in $ D $
along any path.
The same principle can also be formulated about the behaviour of the hyperbolic length of curves, the hyperbolic distance or the hyperbolic area for a given mapping. In fact, if $ L $
is a rectifiable curve in $ D $,
then (for the meaning of the symbols see Hyperbolic metric)
$$
\mu _ {G} ( f ( L)) \leq \mu _ {D} ( L).
$$
If $ z _ {1} $
and $ z _ {2} $
are two points in $ D $,
then
$$
r _ {G} ( f ( z _ {1} ), f ( z _ {2} )) \leq \
r _ {D} ( z _ {1} , z _ {2} ).
$$
If $ B $
is a domain in $ D $,
then
$$
\Delta _ {G} ( f ( B)) \leq \Delta _ {D} ( B).
$$
Equality in these inequalities holds only in the above-mentioned case.
The above result as applied to the hyperbolic distance shows that under the mapping $ w = f( z) $
the image of the hyperbolic disc with centre at the point $ z _ {0} \in D $
is contained in the hyperbolic disc with its centre at the point $ w _ {0} = f( z _ {0} ) $
of the same hyperbolic radius.
This result is a generalization to the case of multiply-connected domains of the following fact in the theory of conformal mapping (the invariant form of Schwarz' lemma): Under the mapping of the disc $ E $
by a regular function
$$
w = f ( z),\ \
| f ( z) | < 1
$$
in $ E $,
the hyperbolic distance between the images of the points $ z _ {1} $
and $ z _ {2} $
of $ E $
does not exceed the hyperbolic distance between $ z _ {1} $
and $ z _ {2} $,
and is equal to that distance only for a bilinear transformation of $ E $
onto itself.
The principle of the hyperbolic metric is connected with the Lindelöf principle as follows. If the domains $ D $
and $ G $
have a Green function and are simply connected, both these principles are identical. If $ D $
is simply connected, while $ G $
is multiply connected, the principle of the hyperbolic metric yields a more precise estimate of the domain containing the image of a hyperbolic disc in $ D $,
defined by an inequality $ g _ {D} ( z, z _ {0} ) > \lambda $
under the mapping $ w = f( z) $,
where $ g _ {D} ( z, z _ {0} ) $
denotes the Green function of $ D $
with logarithmic pole at $ z _ {0} \in D $.
The principle of the hyperbolic metric is also applicable to cases in which Lindelöf's principle does not apply — e.g. to domains having at least three boundary points but not having a Green function.
References
[a1] | L.V. Ahlfors, "Conformal invariants. Topics in geometric function theory" , McGraw-Hill (1973) |