Namespaces
Variants
Actions

Difference between revisions of "Affine torsion"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(details)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
<!--
 +
a0111301.png
 +
$#A+1 = 1 n = 0
 +
$#C+1 = 1 : ~/encyclopedia/old_files/data/A011/A.0101130 Affine torsion
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
One of the differential invariants of a curve in equi-affine space:
 
One of the differential invariants of a curve in equi-affine space:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011130/a0111301.png" /></td> </tr></table>
+
$$
 +
\tau  = - ( \mathbf r  ^ {\prime\prime} , \mathbf r  ^ {\prime\prime\prime} ,\
 +
\mathbf r  ^ {\prime\prime\prime\prime} ) ,
 +
$$
  
 
where the primes denote differentiation with respect to the affine parameter of the position vector of the curve. Similar concepts are introduced for curves in spaces with other fundamental groups such as centro-affine.
 
where the primes denote differentiation with respect to the affine parameter of the position vector of the curve. Similar concepts are introduced for curves in spaces with other fundamental groups such as centro-affine.
 
 
 
====Comments====
 
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. Buchin,  "Affine differential geometry" , Sci. Press and Gordon &amp; Breach  (1983)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  S. Buchin,  "Affine differential geometry" , Sci. Press and Gordon &amp; Breach  (1983)</TD></TR>
 +
</table>

Latest revision as of 18:42, 11 April 2023


One of the differential invariants of a curve in equi-affine space:

$$ \tau = - ( \mathbf r ^ {\prime\prime} , \mathbf r ^ {\prime\prime\prime} ,\ \mathbf r ^ {\prime\prime\prime\prime} ) , $$

where the primes denote differentiation with respect to the affine parameter of the position vector of the curve. Similar concepts are introduced for curves in spaces with other fundamental groups such as centro-affine.

References

[1] S. Buchin, "Affine differential geometry" , Sci. Press and Gordon & Breach (1983)
How to Cite This Entry:
Affine torsion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Affine_torsion&oldid=12616
This article was adapted from an original article by A.P. Shirokov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article