Difference between revisions of "Tangent sheaf"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
(gather refs) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
− | + | t0921901.png | |
− | + | $#A+1 = 32 n = 0 | |
− | + | $#C+1 = 32 : ~/encyclopedia/old_files/data/T092/T.0902190 Tangent sheaf | |
− | + | Automatically converted into TeX, above some diagnostics. | |
− | + | Please remove this comment and the {{TEX|auto}} line below, | |
− | + | if TeX found to be correct. | |
− | + | --> | |
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | ''in algebraic geometry'' | ||
− | = | + | The sheaf $ \theta _ {X} $ |
+ | on an [[Algebraic variety|algebraic variety]] or [[Scheme|scheme]] $ X $ | ||
+ | over a field $ k $, | ||
+ | whose sections over an open affine subspace $ U = \mathop{\rm Spec} ( A) $ | ||
+ | are the $ A $- | ||
+ | modules of $ k $- | ||
+ | derivations $ \mathop{\rm Der} _ {k} ( A, A) $ | ||
+ | of the ring $ A $. | ||
+ | An equivalent definition is that $ \theta _ {X} $ | ||
+ | be the sheaf of homomorphisms $ \mathop{\rm Hom} ( \Omega _ {X/k} ^ {1} , {\mathcal O} _ {X} ) $ | ||
+ | of the sheaf of differentials $ \Omega _ {X/k} ^ {1} $ | ||
+ | into the structure sheaf $ {\mathcal O} _ {X} $( | ||
+ | see [[Derivations, module of|Derivations, module of]]). | ||
+ | For any rational $ k $- | ||
+ | point $ x \in X $, | ||
+ | the stalk $ \theta _ {X} ( x) $ | ||
+ | of the sheaf $ \theta _ {X} $ | ||
+ | is identical to the [[Zariski tangent space|Zariski tangent space]] $ T _ {K,x} $ | ||
+ | to $ X $ | ||
+ | at $ x $, | ||
+ | that is, to the vector $ k $- | ||
+ | space $ \mathop{\rm Hom} _ {k} ( \mathfrak M _ {x} / \mathfrak M _ {x} ^ {2} , k) $, | ||
+ | where $ \mathfrak M _ {x} $ | ||
+ | is the maximal ideal of the local ring $ {\mathcal O} _ {K,x} $. | ||
+ | Instead of the tangent sheaf $ \theta _ {X} $ | ||
+ | one can use the sheaf of germs of sections of the vector bundle $ V ( \Omega _ {X/k} ^ {1} ) $ | ||
+ | dual to $ \Omega _ {X} ^ {1} $( | ||
+ | or the tangent bundle to $ X $). | ||
+ | In the case when $ X $ | ||
+ | is a smooth connected $ k $- | ||
+ | scheme, $ \theta _ {X} $ | ||
+ | is a locally free sheaf on $ X $ | ||
+ | of rank equal to the dimension of $ X $. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. Sect. IV.2 {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) {{MR|0447223}} {{ZBL|0362.14001}} </TD></TR> | ||
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. Sect. IV.2 {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR> | ||
+ | </table> |
Latest revision as of 15:53, 10 April 2023
in algebraic geometry
The sheaf $ \theta _ {X} $ on an algebraic variety or scheme $ X $ over a field $ k $, whose sections over an open affine subspace $ U = \mathop{\rm Spec} ( A) $ are the $ A $- modules of $ k $- derivations $ \mathop{\rm Der} _ {k} ( A, A) $ of the ring $ A $. An equivalent definition is that $ \theta _ {X} $ be the sheaf of homomorphisms $ \mathop{\rm Hom} ( \Omega _ {X/k} ^ {1} , {\mathcal O} _ {X} ) $ of the sheaf of differentials $ \Omega _ {X/k} ^ {1} $ into the structure sheaf $ {\mathcal O} _ {X} $( see Derivations, module of).
For any rational $ k $- point $ x \in X $, the stalk $ \theta _ {X} ( x) $ of the sheaf $ \theta _ {X} $ is identical to the Zariski tangent space $ T _ {K,x} $ to $ X $ at $ x $, that is, to the vector $ k $- space $ \mathop{\rm Hom} _ {k} ( \mathfrak M _ {x} / \mathfrak M _ {x} ^ {2} , k) $, where $ \mathfrak M _ {x} $ is the maximal ideal of the local ring $ {\mathcal O} _ {K,x} $. Instead of the tangent sheaf $ \theta _ {X} $ one can use the sheaf of germs of sections of the vector bundle $ V ( \Omega _ {X/k} ^ {1} ) $ dual to $ \Omega _ {X} ^ {1} $( or the tangent bundle to $ X $). In the case when $ X $ is a smooth connected $ k $- scheme, $ \theta _ {X} $ is a locally free sheaf on $ X $ of rank equal to the dimension of $ X $.
References
[1] | I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) MR0447223 Zbl 0362.14001 |
[a1] | R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. Sect. IV.2 MR0463157 Zbl 0367.14001 |
Tangent sheaf. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Tangent_sheaf&oldid=23990