|
|
(2 intermediate revisions by one other user not shown) |
Line 1: |
Line 1: |
− | ''in algebraic geometry''
| + | <!-- |
− | | + | t0921901.png |
− | The sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092190/t0921901.png" /> on an [[Algebraic variety|algebraic variety]] or [[Scheme|scheme]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092190/t0921902.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092190/t0921903.png" />, whose sections over an open affine subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092190/t0921904.png" /> are the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092190/t0921905.png" />-modules of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092190/t0921906.png" />-derivations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092190/t0921907.png" /> of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092190/t0921908.png" />. An equivalent definition is that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092190/t0921909.png" /> be the sheaf of homomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092190/t09219010.png" /> of the sheaf of differentials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092190/t09219011.png" /> into the structure sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092190/t09219012.png" /> (see [[Derivations, module of|Derivations, module of]]).
| + | $#A+1 = 32 n = 0 |
− | | + | $#C+1 = 32 : ~/encyclopedia/old_files/data/T092/T.0902190 Tangent sheaf |
− | For any rational <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092190/t09219013.png" />-point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092190/t09219014.png" />, the stalk <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092190/t09219015.png" /> of the sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092190/t09219016.png" /> is identical to the [[Zariski tangent space|Zariski tangent space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092190/t09219017.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092190/t09219018.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092190/t09219019.png" />, that is, to the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092190/t09219020.png" />-space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092190/t09219021.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092190/t09219022.png" /> is the maximal ideal of the local ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092190/t09219023.png" />. Instead of the tangent sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092190/t09219024.png" /> one can use the sheaf of germs of sections of the vector bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092190/t09219025.png" /> dual to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092190/t09219026.png" /> (or the tangent bundle to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092190/t09219027.png" />). In the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092190/t09219028.png" /> is a smooth connected <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092190/t09219029.png" />-scheme, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092190/t09219030.png" /> is a locally free sheaf on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092190/t09219031.png" /> of rank equal to the dimension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092190/t09219032.png" />.
| + | Automatically converted into TeX, above some diagnostics. |
− | | + | Please remove this comment and the {{TEX|auto}} line below, |
− | ====References====
| + | if TeX found to be correct. |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian)</TD></TR></table>
| + | --> |
| | | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
| + | ''in algebraic geometry'' |
| | | |
− | ====Comments==== | + | The sheaf $ \theta _ {X} $ |
| + | on an [[Algebraic variety|algebraic variety]] or [[Scheme|scheme]] $ X $ |
| + | over a field $ k $, |
| + | whose sections over an open affine subspace $ U = \mathop{\rm Spec} ( A) $ |
| + | are the $ A $- |
| + | modules of $ k $- |
| + | derivations $ \mathop{\rm Der} _ {k} ( A, A) $ |
| + | of the ring $ A $. |
| + | An equivalent definition is that $ \theta _ {X} $ |
| + | be the sheaf of homomorphisms $ \mathop{\rm Hom} ( \Omega _ {X/k} ^ {1} , {\mathcal O} _ {X} ) $ |
| + | of the sheaf of differentials $ \Omega _ {X/k} ^ {1} $ |
| + | into the structure sheaf $ {\mathcal O} _ {X} $( |
| + | see [[Derivations, module of|Derivations, module of]]). |
| | | |
| + | For any rational $ k $- |
| + | point $ x \in X $, |
| + | the stalk $ \theta _ {X} ( x) $ |
| + | of the sheaf $ \theta _ {X} $ |
| + | is identical to the [[Zariski tangent space|Zariski tangent space]] $ T _ {K,x} $ |
| + | to $ X $ |
| + | at $ x $, |
| + | that is, to the vector $ k $- |
| + | space $ \mathop{\rm Hom} _ {k} ( \mathfrak M _ {x} / \mathfrak M _ {x} ^ {2} , k) $, |
| + | where $ \mathfrak M _ {x} $ |
| + | is the maximal ideal of the local ring $ {\mathcal O} _ {K,x} $. |
| + | Instead of the tangent sheaf $ \theta _ {X} $ |
| + | one can use the sheaf of germs of sections of the vector bundle $ V ( \Omega _ {X/k} ^ {1} ) $ |
| + | dual to $ \Omega _ {X} ^ {1} $( |
| + | or the tangent bundle to $ X $). |
| + | In the case when $ X $ |
| + | is a smooth connected $ k $- |
| + | scheme, $ \theta _ {X} $ |
| + | is a locally free sheaf on $ X $ |
| + | of rank equal to the dimension of $ X $. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. Sect. IV.2</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[1]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) {{MR|0447223}} {{ZBL|0362.14001}} </TD></TR> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. Sect. IV.2 {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR> |
| + | </table> |
in algebraic geometry
The sheaf $ \theta _ {X} $
on an algebraic variety or scheme $ X $
over a field $ k $,
whose sections over an open affine subspace $ U = \mathop{\rm Spec} ( A) $
are the $ A $-
modules of $ k $-
derivations $ \mathop{\rm Der} _ {k} ( A, A) $
of the ring $ A $.
An equivalent definition is that $ \theta _ {X} $
be the sheaf of homomorphisms $ \mathop{\rm Hom} ( \Omega _ {X/k} ^ {1} , {\mathcal O} _ {X} ) $
of the sheaf of differentials $ \Omega _ {X/k} ^ {1} $
into the structure sheaf $ {\mathcal O} _ {X} $(
see Derivations, module of).
For any rational $ k $-
point $ x \in X $,
the stalk $ \theta _ {X} ( x) $
of the sheaf $ \theta _ {X} $
is identical to the Zariski tangent space $ T _ {K,x} $
to $ X $
at $ x $,
that is, to the vector $ k $-
space $ \mathop{\rm Hom} _ {k} ( \mathfrak M _ {x} / \mathfrak M _ {x} ^ {2} , k) $,
where $ \mathfrak M _ {x} $
is the maximal ideal of the local ring $ {\mathcal O} _ {K,x} $.
Instead of the tangent sheaf $ \theta _ {X} $
one can use the sheaf of germs of sections of the vector bundle $ V ( \Omega _ {X/k} ^ {1} ) $
dual to $ \Omega _ {X} ^ {1} $(
or the tangent bundle to $ X $).
In the case when $ X $
is a smooth connected $ k $-
scheme, $ \theta _ {X} $
is a locally free sheaf on $ X $
of rank equal to the dimension of $ X $.
References