Namespaces
Variants
Actions

Difference between revisions of "Dirichlet distribution"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (→‎References: zbl link)
 
(3 intermediate revisions by 3 users not shown)
Line 14: Line 14:
  
 
$$  
 
$$  
S _ {k}  =  \{ {( x _ {1} \dots x _ {k} ) } : {x _ {1} \geq 0 \dots x _ {k} \geq 0 , x _ {1} + \dots + x _ {k} = 1 } \}
+
S _ {k}  =  \{ {( x _ {1}, \dots, x _ {k} ) } : {x _ {1} > 0, \ldots, x _ {k} > 0 , x _ {1} + \dots + x _ {k} = 1 } \}
 
,
 
,
 
$$
 
$$
Line 22: Line 22:
  
 
$$  
 
$$  
p ( x _ {1} \dots x _ {k} )  =  \left \{
+
p ( x _ {1}, \dots, x _ {k} )  =  \left \{
  
 
\begin{array}{ll}
 
\begin{array}{ll}
C _ {k} \prod _ { i= } 1 ^ { k }  x _ {i} ^ {\nu _ {i} - 1 }  & \textrm{ if }  ( x _ {1} \dots x _ {k} ) \in S _ {k} ,  \\
+
C _ {k} \prod _ { i=1 } ^ { k }  x _ {i} ^ {\nu _ {i} - 1 }  & \textrm{ if }  ( x _ {1}, \ldots, x _ {k} ) \in S _ {k} ,  \\
  0  & \textrm{ if }  ( x _ {1} \dots x _ {k} ) \notin S _ {k} ,  \\
+
  0  & \textrm{ if }  ( x _ {1}, \ldots, x _ {k} ) \notin S _ {k} ,  \\
 
\end{array}
 
\end{array}
  
 
  \right .$$
 
  \right .$$
  
where  $  \nu _ {1} > 0 \dots \nu _ {k} > 0 $
+
where  $  \nu _ {1} > 0, \dots, \nu _ {k} > 0 $
 
and
 
and
  
 
$$  
 
$$  
C _ {k}  =  \Gamma ( \nu _ {1} + \dots + \nu _ {k} ) \prod _ { i= } 1 ^ { k }  
+
C _ {k}  =  \Gamma ( \nu _ {1} + \dots + \nu _ {k} ) \prod _ { i=1 } ^ { k }  
  
 
\frac{1}{\Gamma ( \nu _ {i} ) }
 
\frac{1}{\Gamma ( \nu _ {i} ) }
Line 43: Line 43:
 
where  $  \Gamma ( \cdot ) $
 
where  $  \Gamma ( \cdot ) $
 
is the gamma-function. If  $  k= 2 $,  
 
is the gamma-function. If  $  k= 2 $,  
one has a special case of the Dirichlet distribution: the [[Beta-distribution|beta-distribution]]. The Dirichlet distribution plays an important role in the theory of order statistics. For instance, if  $  X _ {1} \dots X _ {n} $
+
one has a special case of the Dirichlet distribution: the [[Beta-distribution|beta-distribution]]. The Dirichlet distribution plays an important role in the theory of order statistics. For instance, if  $  X _ {1}, \ldots, X _ {n} $
 
are independent random variables that are uniformly distributed over the interval  $  [ 0, 1] $
 
are independent random variables that are uniformly distributed over the interval  $  [ 0, 1] $
and  $  X  ^ {(} 1) \leq  \dots \leq  X  ^ {(} n) $
+
and  $  X  ^ {( 1)} \leq  \dots \leq  X  ^ {( n)} $
 
are the corresponding order statistics (cf. [[Order statistic|Order statistic]]), the joint distribution of the  $  k $
 
are the corresponding order statistics (cf. [[Order statistic|Order statistic]]), the joint distribution of the  $  k $
 
differences
 
differences
  
 
$$  
 
$$  
X ^ {( m _ {1} ) } , X ^ {( m _ {2} ) } - X ^ {( m _ {1} ) }
+
X ^ {( m _ {1} ) } , X ^ {( m _ {2} ) } - X ^ {( m _ {1} ) },
\dots X ^ {( m _ {k-} 1 ) } - X ^ {( m _ {k-} 2 ) } , 1 - X ^  
+
\ldots, X ^ {( m _ {k-1} ) } - X ^ {( m _ {k-2} ) } , 1 - X ^  
 
{( m _ {k} ) }
 
{( m _ {k} ) }
 
$$
 
$$
  
(it is assumed that  $  1 \leq  m _ {1} < m _ {2} < \dots < m _ {k-} 1 $)  
+
(it is assumed that  $  1 \leq  m _ {1} < m _ {2} < \dots < m _ {k-1} $)  
 
has the Dirichlet distribution with  $  \nu _ {1} = m _ {1} $,  
 
has the Dirichlet distribution with  $  \nu _ {1} = m _ {1} $,  
$  \nu _ {2} = m _ {2} - m _ {1} \dots \nu _ {k-} 1 = m _ {k-} 1 - m _ {k-} 2 $,  
+
$  \nu _ {2} = m _ {2} - m _ {1}, \ldots, \nu _ {k-1} = m _ {k-1} - m _ {k-2} $,  
$  \nu _ {k} = n - m _ {k-} 1 $.
+
$  \nu _ {k} = n - m _ {k-1} $.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S.S. Wilks,  "Mathematical statistics" , Wiley  (1962)</TD></TR></table>
+
<table>
 
+
<TR><TD valign="top">[1]</TD> <TD valign="top">  S.S. Wilks,  "Mathematical statistics" , Wiley  (1962) {{ZBL|0173.45805}}</TD></TR>
====Comments====
+
<TR><TD valign="top">[a1]</TD> <TD valign="top">  T.S. Ferguson,  "A Bayesian analysis of some nonparametric problems"  ''Ann. Stat.'' , '''1'''  (1973)  pp. 209–230</TD></TR>
 
+
</table>
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  T.S. Ferguson,  "A Bayesian analysis of some nonparametric problems"  ''Ann. Stat.'' , '''1'''  (1973)  pp. 209–230</TD></TR></table>
 

Latest revision as of 08:57, 8 April 2023


A probability distribution on the simplex

$$ S _ {k} = \{ {( x _ {1}, \dots, x _ {k} ) } : {x _ {1} > 0, \ldots, x _ {k} > 0 , x _ {1} + \dots + x _ {k} = 1 } \} , $$

where $ k= 2, 3 \dots $ determined by the probability density

$$ p ( x _ {1}, \dots, x _ {k} ) = \left \{ \begin{array}{ll} C _ {k} \prod _ { i=1 } ^ { k } x _ {i} ^ {\nu _ {i} - 1 } & \textrm{ if } ( x _ {1}, \ldots, x _ {k} ) \in S _ {k} , \\ 0 & \textrm{ if } ( x _ {1}, \ldots, x _ {k} ) \notin S _ {k} , \\ \end{array} \right .$$

where $ \nu _ {1} > 0, \dots, \nu _ {k} > 0 $ and

$$ C _ {k} = \Gamma ( \nu _ {1} + \dots + \nu _ {k} ) \prod _ { i=1 } ^ { k } \frac{1}{\Gamma ( \nu _ {i} ) } , $$

where $ \Gamma ( \cdot ) $ is the gamma-function. If $ k= 2 $, one has a special case of the Dirichlet distribution: the beta-distribution. The Dirichlet distribution plays an important role in the theory of order statistics. For instance, if $ X _ {1}, \ldots, X _ {n} $ are independent random variables that are uniformly distributed over the interval $ [ 0, 1] $ and $ X ^ {( 1)} \leq \dots \leq X ^ {( n)} $ are the corresponding order statistics (cf. Order statistic), the joint distribution of the $ k $ differences

$$ X ^ {( m _ {1} ) } , X ^ {( m _ {2} ) } - X ^ {( m _ {1} ) }, \ldots, X ^ {( m _ {k-1} ) } - X ^ {( m _ {k-2} ) } , 1 - X ^ {( m _ {k} ) } $$

(it is assumed that $ 1 \leq m _ {1} < m _ {2} < \dots < m _ {k-1} $) has the Dirichlet distribution with $ \nu _ {1} = m _ {1} $, $ \nu _ {2} = m _ {2} - m _ {1}, \ldots, \nu _ {k-1} = m _ {k-1} - m _ {k-2} $, $ \nu _ {k} = n - m _ {k-1} $.

References

[1] S.S. Wilks, "Mathematical statistics" , Wiley (1962) Zbl 0173.45805
[a1] T.S. Ferguson, "A Bayesian analysis of some nonparametric problems" Ann. Stat. , 1 (1973) pp. 209–230
How to Cite This Entry:
Dirichlet distribution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dirichlet_distribution&oldid=46717
This article was adapted from an original article by L.N. Bol'shev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article