Difference between revisions of "Comparison theorem (algebraic geometry)"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
|||
(2 intermediate revisions by the same user not shown) | |||
Line 11: | Line 11: | ||
{{TEX|done}} | {{TEX|done}} | ||
− | A theorem on the relations between homotopy invariants of schemes of finite type over the field | + | A theorem on the relations between homotopy invariants of schemes of finite type over the field $\mathbf C$ |
in classical and étale topologies. | in classical and étale topologies. | ||
− | Let $ | + | Let $X$ |
be a scheme of finite type over $ \mathbf C $, | be a scheme of finite type over $ \mathbf C $, | ||
while $ F $ | while $ F $ | ||
Line 29: | Line 29: | ||
On the other hand, a finite topological covering of a smooth scheme $ X $ | On the other hand, a finite topological covering of a smooth scheme $ X $ | ||
of finite type over $ \mathbf C $ | of finite type over $ \mathbf C $ | ||
− | has a unique algebraic structure (Riemann's existence theorem). The fundamental étale group of $ X _ {\textrm{ et } } $ | + | has a unique algebraic structure (Riemann's existence theorem). The fundamental étale group of $ X _ {\textrm{ et } } $ {{Cite|1}} is therefore the pro-finite completion of the ordinary group of classes of homotopically equivalent loops: |
$$ | $$ | ||
Line 41: | Line 41: | ||
and $ X _ {\textrm{ et } } $ | and $ X _ {\textrm{ et } } $ | ||
are the classical and étale homotopy types of the scheme $ X $, | are the classical and étale homotopy types of the scheme $ X $, | ||
− | respectively (see | + | respectively (see {{Cite|1}}, {{Cite|2}}). |
====References==== | ====References==== | ||
− | <table><TR><TD valign="top"> | + | <table> |
+ | <TR><TD valign="top">{{Ref|1}}</TD> <TD valign="top"> M. Artin, "The étale topology of schemes" , ''Proc. Internat. Congress Mathematicians (Moscow, 1966)'' , Mir (1968) pp. 44–56 {{ZBL|0199.24603}}</TD></TR> | ||
+ | <TR><TD valign="top">{{Ref|2}}</TD> <TD valign="top"> D. Sullivan, "Geometric topology" , M.I.T. (1971) (Notes)</TD></TR> | ||
+ | </table> |
Latest revision as of 13:16, 6 April 2023
A theorem on the relations between homotopy invariants of schemes of finite type over the field $\mathbf C$
in classical and étale topologies.
Let $X$ be a scheme of finite type over $ \mathbf C $, while $ F $ is a constructible torsion sheaf of Abelian groups on $ X _ {\textrm{ et } } $. Then $ F $ induces a sheaf on $ X $ in the classical topology, and there exist canonical isomorphisms
$$ H ^ {q} ( X _ {\textrm{ et } } , F) \cong \ H ^ {q} ( X _ {\textrm{ class } } , F). $$
On the other hand, a finite topological covering of a smooth scheme $ X $ of finite type over $ \mathbf C $ has a unique algebraic structure (Riemann's existence theorem). The fundamental étale group of $ X _ {\textrm{ et } } $ [1] is therefore the pro-finite completion of the ordinary group of classes of homotopically equivalent loops:
$$ \pi _ {1} ( X _ {\textrm{ et } } ) = \ [ \pi _ {1} ( X _ {\textrm{ class } } )] \widehat{ {}} . $$
Moreover, if $ X _ {\textrm{ class } } $ is simply connected, then $ X _ {\textrm{ et } } = \widehat{X} _ { \mathop{\rm cl} } $, where $ X _ { \mathop{\rm cl} } $ and $ X _ {\textrm{ et } } $ are the classical and étale homotopy types of the scheme $ X $, respectively (see [1], [2]).
References
[1] | M. Artin, "The étale topology of schemes" , Proc. Internat. Congress Mathematicians (Moscow, 1966) , Mir (1968) pp. 44–56 Zbl 0199.24603 |
[2] | D. Sullivan, "Geometric topology" , M.I.T. (1971) (Notes) |
Comparison theorem (algebraic geometry). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Comparison_theorem_(algebraic_geometry)&oldid=46413