Difference between revisions of "Comparison theorem (algebraic geometry)"
(Importing text file) |
|||
| (3 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
| − | A | + | <!-- |
| + | c0236501.png | ||
| + | $#A+1 = 17 n = 0 | ||
| + | $#C+1 = 17 : ~/encyclopedia/old_files/data/C023/C.0203650 Comparison theorem (algebraic geometry) | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | + | A theorem on the relations between homotopy invariants of schemes of finite type over the field $\mathbf C$ | |
| + | in classical and étale topologies. | ||
| − | + | Let $X$ | |
| + | be a scheme of finite type over $ \mathbf C $, | ||
| + | while $ F $ | ||
| + | is a constructible torsion sheaf of Abelian groups on $ X _ {\textrm{ et } } $. | ||
| + | Then $ F $ | ||
| + | induces a sheaf on $ X $ | ||
| + | in the classical topology, and there exist canonical isomorphisms | ||
| − | + | $$ | |
| + | H ^ {q} ( X _ {\textrm{ et } } , F) \cong \ | ||
| + | H ^ {q} ( X _ {\textrm{ class } } , F). | ||
| + | $$ | ||
| − | Moreover, if | + | On the other hand, a finite topological covering of a smooth scheme $ X $ |
| + | of finite type over $ \mathbf C $ | ||
| + | has a unique algebraic structure (Riemann's existence theorem). The fundamental étale group of $ X _ {\textrm{ et } } $ {{Cite|1}} is therefore the pro-finite completion of the ordinary group of classes of homotopically equivalent loops: | ||
| + | |||
| + | $$ | ||
| + | \pi _ {1} ( X _ {\textrm{ et } } ) = \ | ||
| + | [ \pi _ {1} ( X _ {\textrm{ class } } )] \widehat{ {}} . | ||
| + | $$ | ||
| + | |||
| + | Moreover, if $ X _ {\textrm{ class } } $ | ||
| + | is simply connected, then $ X _ {\textrm{ et } } = \widehat{X} _ { \mathop{\rm cl} } $, | ||
| + | where $ X _ { \mathop{\rm cl} } $ | ||
| + | and $ X _ {\textrm{ et } } $ | ||
| + | are the classical and étale homotopy types of the scheme $ X $, | ||
| + | respectively (see {{Cite|1}}, {{Cite|2}}). | ||
====References==== | ====References==== | ||
| − | <table><TR><TD valign="top"> | + | <table> |
| + | <TR><TD valign="top">{{Ref|1}}</TD> <TD valign="top"> M. Artin, "The étale topology of schemes" , ''Proc. Internat. Congress Mathematicians (Moscow, 1966)'' , Mir (1968) pp. 44–56 {{ZBL|0199.24603}}</TD></TR> | ||
| + | <TR><TD valign="top">{{Ref|2}}</TD> <TD valign="top"> D. Sullivan, "Geometric topology" , M.I.T. (1971) (Notes)</TD></TR> | ||
| + | </table> | ||
Latest revision as of 13:16, 6 April 2023
A theorem on the relations between homotopy invariants of schemes of finite type over the field $\mathbf C$
in classical and étale topologies.
Let $X$ be a scheme of finite type over $ \mathbf C $, while $ F $ is a constructible torsion sheaf of Abelian groups on $ X _ {\textrm{ et } } $. Then $ F $ induces a sheaf on $ X $ in the classical topology, and there exist canonical isomorphisms
$$ H ^ {q} ( X _ {\textrm{ et } } , F) \cong \ H ^ {q} ( X _ {\textrm{ class } } , F). $$
On the other hand, a finite topological covering of a smooth scheme $ X $ of finite type over $ \mathbf C $ has a unique algebraic structure (Riemann's existence theorem). The fundamental étale group of $ X _ {\textrm{ et } } $ [1] is therefore the pro-finite completion of the ordinary group of classes of homotopically equivalent loops:
$$ \pi _ {1} ( X _ {\textrm{ et } } ) = \ [ \pi _ {1} ( X _ {\textrm{ class } } )] \widehat{ {}} . $$
Moreover, if $ X _ {\textrm{ class } } $ is simply connected, then $ X _ {\textrm{ et } } = \widehat{X} _ { \mathop{\rm cl} } $, where $ X _ { \mathop{\rm cl} } $ and $ X _ {\textrm{ et } } $ are the classical and étale homotopy types of the scheme $ X $, respectively (see [1], [2]).
References
| [1] | M. Artin, "The étale topology of schemes" , Proc. Internat. Congress Mathematicians (Moscow, 1966) , Mir (1968) pp. 44–56 Zbl 0199.24603 |
| [2] | D. Sullivan, "Geometric topology" , M.I.T. (1971) (Notes) |
Comparison theorem (algebraic geometry). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Comparison_theorem_(algebraic_geometry)&oldid=13795