Difference between revisions of "Cylinder coordinates"
(Importing text file) |
|||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | c0276001.png | ||
+ | $#A+1 = 34 n = 0 | ||
+ | $#C+1 = 34 : ~/encyclopedia/old_files/data/C027/C.0207600 Cylinder coordinates, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''cylindrical coordinates'' | ''cylindrical coordinates'' | ||
− | Numbers | + | Numbers $ \rho , \phi $ |
+ | and $ z $ | ||
+ | connected with the Cartesian coordinates $ x, y $ | ||
+ | and $ z $ | ||
+ | by the formulas: | ||
− | + | $$ | |
+ | x = \rho \cos \phi ,\ \ | ||
+ | y = \rho \sin \phi ,\ \ | ||
+ | z = z, | ||
+ | $$ | ||
− | where < | + | where $ 0 \leq \rho < \infty $, |
+ | $ 0 \leq \phi < 2 \pi $, | ||
+ | $ - \infty < z < \infty $. | ||
+ | The coordinate surfaces (see Fig.) are: circular cylinders $ ( \rho = \textrm{ const } ) $, | ||
+ | half-planes $ ( \phi = \textrm{ const } ) $ | ||
+ | and planes $ ( z = \textrm{ const } ) $. | ||
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/c027600a.gif" /> | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/c027600a.gif" /> | ||
Line 15: | Line 40: | ||
The [[Lamé coefficients|Lamé coefficients]] are: | The [[Lamé coefficients|Lamé coefficients]] are: | ||
− | + | $$ | |
+ | L _ \rho = \ | ||
+ | L _ {z} = 1,\ \ | ||
+ | L _ \phi = \rho . | ||
+ | $$ | ||
The area element of a surface is: | The area element of a surface is: | ||
− | + | $$ | |
+ | ds = \ | ||
+ | \sqrt {\rho ^ {2} ( d \rho d \phi ) ^ {2} + | ||
+ | ( d \rho dz) ^ {2} + | ||
+ | \rho ^ {2} ( d \phi dz) ^ {2} } . | ||
+ | $$ | ||
The volume element is: | The volume element is: | ||
− | + | $$ | |
+ | dV = \rho d \rho d \phi dz. | ||
+ | $$ | ||
The differentiation operations of vector analysis are given by: | The differentiation operations of vector analysis are given by: | ||
− | + | $$ | |
+ | \mathop{\rm grad} _ \rho f = \ | ||
− | + | \frac{\partial f }{\partial \rho } | |
+ | ,\ \ | ||
+ | \mathop{\rm grad} _ \phi f = \ | ||
+ | { | ||
+ | \frac{1} \rho | ||
+ | } | ||
− | + | \frac{\partial f }{\partial \phi } | |
+ | ,\ \ | ||
+ | \mathop{\rm grad} _ {z} f = \ | ||
− | + | \frac{\partial f }{\partial z } | |
+ | ; | ||
+ | $$ | ||
− | + | $$ | |
+ | \mathop{\rm div} \mathbf a = { | ||
+ | \frac{1} \rho | ||
+ | } a _ \rho + | ||
+ | \frac{\partial a _ \rho }{\partial \rho } | ||
+ | + { | ||
+ | \frac{1} \rho | ||
+ | } | ||
+ | \frac{\partial a _ \phi }{\partial \phi } | ||
+ | + | ||
+ | \frac{\partial a _ {z} }{\partial z } | ||
+ | ; | ||
+ | $$ | ||
− | + | $$ | |
+ | \mathop{\rm curl} _ \rho \mathbf a = { | ||
+ | \frac{1} \rho | ||
+ | } | ||
+ | \frac{\partial a _ {z} }{\partial \phi } | ||
+ | - | ||
+ | \frac{\partial a _ \phi }{\partial z } | ||
+ | ,\ \mathop{\rm curl} _ \phi \mathbf a = \ | ||
− | + | \frac{\partial a _ \rho }{\partial z } | |
+ | - | ||
+ | \frac{\partial a _ {z} }{\partial \rho } | ||
+ | ; | ||
+ | $$ | ||
− | + | $$ | |
+ | \mathop{\rm curl} _ {z} \mathbf a = { | ||
+ | \frac{1} \rho | ||
+ | } a _ \phi + | ||
+ | \frac{\partial a _ \phi }{\partial \rho } | ||
+ | - { | ||
+ | \frac{1} \rho | ||
+ | } | ||
+ | \frac{\partial a _ \rho }{\partial \phi } | ||
+ | ; | ||
+ | $$ | ||
+ | $$ | ||
+ | \Delta f = | ||
+ | \frac{\partial ^ {2} f }{\partial \rho ^ {2} } | ||
+ | + { | ||
+ | \frac{1} \rho | ||
+ | } | ||
+ | \frac{\partial f }{\partial \rho } | ||
+ | + { | ||
+ | \frac{1}{ | ||
+ | \rho ^ {2} } | ||
+ | } | ||
+ | \frac{\partial ^ {2} f }{\partial \phi ^ {2} | ||
+ | } | ||
+ | + | ||
+ | \frac{\partial ^ {2} \phi }{\partial z ^ {2} } | ||
+ | . | ||
+ | $$ | ||
− | + | Generalized cylinder coordinates are numbers $ u , v $ | |
+ | and $ w $ | ||
+ | connected with Cartesian coordinates $ x, y $ | ||
+ | and $ z $ | ||
+ | by the formulas | ||
+ | $$ | ||
+ | x = au \cos v ,\ \ | ||
+ | y = bu \sin v ,\ \ | ||
+ | z = cw, | ||
+ | $$ | ||
+ | |||
+ | where $ 0 \leq u < \infty $, | ||
+ | $ 0 \leq v < 2 \pi $, | ||
+ | $ - \infty < w < \infty $, | ||
+ | $ a > 0 $, | ||
+ | $ b > 0 $, | ||
+ | $ c > 0 $, | ||
+ | $ a \neq b $. | ||
+ | The coordinate surfaces are: elliptic cylinders $ ( u = \textrm{ const } ) $, | ||
+ | half-planes $ ( v = \textrm{ const } ) $ | ||
+ | and planes $ ( w = \textrm{ const } ) $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> U.G. Chambers, "A course in vector analysis" , Chapman & Hall (1969)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> U.G. Chambers, "A course in vector analysis" , Chapman & Hall (1969)</TD></TR></table> | ||
+ | |||
+ | |||
+ | {{OldImage}} |
Latest revision as of 11:19, 26 March 2023
cylindrical coordinates
Numbers $ \rho , \phi $ and $ z $ connected with the Cartesian coordinates $ x, y $ and $ z $ by the formulas:
$$ x = \rho \cos \phi ,\ \ y = \rho \sin \phi ,\ \ z = z, $$
where $ 0 \leq \rho < \infty $, $ 0 \leq \phi < 2 \pi $, $ - \infty < z < \infty $. The coordinate surfaces (see Fig.) are: circular cylinders $ ( \rho = \textrm{ const } ) $, half-planes $ ( \phi = \textrm{ const } ) $ and planes $ ( z = \textrm{ const } ) $.
Figure: c027600a
The system of cylinder coordinates is orthogonal.
The Lamé coefficients are:
$$ L _ \rho = \ L _ {z} = 1,\ \ L _ \phi = \rho . $$
The area element of a surface is:
$$ ds = \ \sqrt {\rho ^ {2} ( d \rho d \phi ) ^ {2} + ( d \rho dz) ^ {2} + \rho ^ {2} ( d \phi dz) ^ {2} } . $$
The volume element is:
$$ dV = \rho d \rho d \phi dz. $$
The differentiation operations of vector analysis are given by:
$$ \mathop{\rm grad} _ \rho f = \ \frac{\partial f }{\partial \rho } ,\ \ \mathop{\rm grad} _ \phi f = \ { \frac{1} \rho } \frac{\partial f }{\partial \phi } ,\ \ \mathop{\rm grad} _ {z} f = \ \frac{\partial f }{\partial z } ; $$
$$ \mathop{\rm div} \mathbf a = { \frac{1} \rho } a _ \rho + \frac{\partial a _ \rho }{\partial \rho } + { \frac{1} \rho } \frac{\partial a _ \phi }{\partial \phi } + \frac{\partial a _ {z} }{\partial z } ; $$
$$ \mathop{\rm curl} _ \rho \mathbf a = { \frac{1} \rho } \frac{\partial a _ {z} }{\partial \phi } - \frac{\partial a _ \phi }{\partial z } ,\ \mathop{\rm curl} _ \phi \mathbf a = \ \frac{\partial a _ \rho }{\partial z } - \frac{\partial a _ {z} }{\partial \rho } ; $$
$$ \mathop{\rm curl} _ {z} \mathbf a = { \frac{1} \rho } a _ \phi + \frac{\partial a _ \phi }{\partial \rho } - { \frac{1} \rho } \frac{\partial a _ \rho }{\partial \phi } ; $$
$$ \Delta f = \frac{\partial ^ {2} f }{\partial \rho ^ {2} } + { \frac{1} \rho } \frac{\partial f }{\partial \rho } + { \frac{1}{ \rho ^ {2} } } \frac{\partial ^ {2} f }{\partial \phi ^ {2} } + \frac{\partial ^ {2} \phi }{\partial z ^ {2} } . $$
Generalized cylinder coordinates are numbers $ u , v $ and $ w $ connected with Cartesian coordinates $ x, y $ and $ z $ by the formulas
$$ x = au \cos v ,\ \ y = bu \sin v ,\ \ z = cw, $$
where $ 0 \leq u < \infty $, $ 0 \leq v < 2 \pi $, $ - \infty < w < \infty $, $ a > 0 $, $ b > 0 $, $ c > 0 $, $ a \neq b $. The coordinate surfaces are: elliptic cylinders $ ( u = \textrm{ const } ) $, half-planes $ ( v = \textrm{ const } ) $ and planes $ ( w = \textrm{ const } ) $.
References
[a1] | U.G. Chambers, "A course in vector analysis" , Chapman & Hall (1969) |
Cylinder coordinates. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cylinder_coordinates&oldid=16846