Namespaces
Variants
Actions

Difference between revisions of "Approximation theory"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (→‎References: latexify)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
<!--
 +
a0130301.png
 +
$#A+1 = 50 n = 1
 +
$#C+1 = 50 : ~/encyclopedia/old_files/data/A013/A.0103030 Approximation theory
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
The branch of mathematical analysis studying methods for approximating some mathematical objects by others and also studying questions related to the research and estimation of the error that arises here.
 
The branch of mathematical analysis studying methods for approximating some mathematical objects by others and also studying questions related to the research and estimation of the error that arises here.
  
 
The main contents of approximation theory concerns the [[Approximation of functions|approximation of functions]]. Its foundations are laid by the work of P.L. Chebyshev (1854–1859) on best uniform approximation of functions by polynomials and by K. Weierstrass, who in 1885 established that in principle it is possible to approximate a continuous function on a finite interval by polynomials with arbitrary pre-given error. The development of approximation theory was to a large extent determined by the fundamental work of H. Lebesgue, Ch.J. de la Vallée-Poussin, S.N. Bernstein [S.N. Bernshtein], D. Jackson, J. Favard, A.N. Kolmogorov and S.M. Nikol'skii on the approximation of functions and function classes.
 
The main contents of approximation theory concerns the [[Approximation of functions|approximation of functions]]. Its foundations are laid by the work of P.L. Chebyshev (1854–1859) on best uniform approximation of functions by polynomials and by K. Weierstrass, who in 1885 established that in principle it is possible to approximate a continuous function on a finite interval by polynomials with arbitrary pre-given error. The development of approximation theory was to a large extent determined by the fundamental work of H. Lebesgue, Ch.J. de la Vallée-Poussin, S.N. Bernstein [S.N. Bernshtein], D. Jackson, J. Favard, A.N. Kolmogorov and S.M. Nikol'skii on the approximation of functions and function classes.
  
With the development of functional analysis, many problems in approximation theory were considered in the most general setting, e.g. as the approximation of elements of an arbitrary linear normed space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a0130301.png" />. Three classes of problems arose here, corresponding more or less to the main chronological stages of development of research in approximation theory.
+
With the development of functional analysis, many problems in approximation theory were considered in the most general setting, e.g. as the approximation of elements of an arbitrary linear normed space $  X $.  
 +
Three classes of problems arose here, corresponding more or less to the main chronological stages of development of research in approximation theory.
  
1) The approximation of a fixed element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a0130302.png" /> by elements of a fixed set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a0130303.png" />. If
+
1) The approximation of a fixed element $  x \in X $
 +
by elements of a fixed set $  \mathfrak N \subset  X $.  
 +
If
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a0130304.png" /></td> </tr></table>
+
$$
 +
E (x, \mathfrak N )  = \
 +
\inf _ {u \in \mathfrak N } \
 +
\| x - u \|
 +
$$
  
is taken as the approximation measure, i.e. the [[Best approximation|best approximation]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a0130305.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a0130306.png" />, then, along with the investigation and estimation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a0130307.png" />, questions on the existence of an element of best approximation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a0130308.png" /> (for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a0130309.png" />), its uniqueness and characteristic features arise. Any operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303010.png" /> mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303011.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303012.png" /> gives rise to an approximation method with error <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303013.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303014.png" /> is a linear manifold, linear operators are of particular importance. For sequences <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303015.png" /> of such operators, the question of the conditions of convergence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303016.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303017.png" /> arises.
+
is taken as the approximation measure, i.e. the [[Best approximation|best approximation]] of $  x $
 +
by $  \mathfrak N $,  
 +
then, along with the investigation and estimation of $  E (x, \mathfrak N ) $,  
 +
questions on the existence of an element of best approximation $  u _ {0} \in \mathfrak N $(
 +
for which $  \| x - u _ {0} \| = E (x, \mathfrak N ) $),  
 +
its uniqueness and characteristic features arise. Any operator $  A $
 +
mapping $  X $
 +
into $  \mathfrak N $
 +
gives rise to an approximation method with error $  \| x - Ax \| $.  
 +
If $  \mathfrak N $
 +
is a linear manifold, linear operators are of particular importance. For sequences $  \{ A _ {n} \} $
 +
of such operators, the question of the conditions of convergence $  A _ {n} x \rightarrow x $
 +
for any $  x \in X $
 +
arises.
  
2) The approximation of a fixed set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303018.png" /> by elements of another fixed set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303019.png" />. The best approximation here is expressed by
+
2) The approximation of a fixed set $  \mathfrak M \subset  X $
 +
by elements of another fixed set $  \mathfrak N \subset  X $.  
 +
The best approximation here is expressed by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303020.png" /></td> </tr></table>
+
$$
 +
E ( \mathfrak M , \mathfrak N )  = \
 +
\sup _ {x \in \mathfrak M } \
 +
E (x, \mathfrak N ),
 +
$$
  
which gives the minimal possible error estimate when approximating an arbitrary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303021.png" /> by elements from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303022.png" />. In concrete cases, the problem consists of estimating, or expressing exactly, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303023.png" /> by characteristic properties of the given sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303024.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303025.png" />. If the approximation is established by an operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303026.png" />, the supremum
+
which gives the minimal possible error estimate when approximating an arbitrary $  x \in X $
 +
by elements from $  \mathfrak N $.  
 +
In concrete cases, the problem consists of estimating, or expressing exactly, $  E ( \mathfrak M , \mathfrak N ) $
 +
by characteristic properties of the given sets $  \mathfrak M $
 +
and $  \mathfrak N $.  
 +
If the approximation is established by an operator $  A $,  
 +
the supremum
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303027.png" /></td> </tr></table>
+
$$
 +
\sup _ {x \in \mathfrak M } \
 +
\| x - Ax \|
 +
$$
  
is investigated, as well as (if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303028.png" /> is a linear manifold)
+
is investigated, as well as (if $  \mathfrak N $
 +
is a linear manifold)
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303029.png" /></td> </tr></table>
+
$$
 +
{\mathcal E} ( \mathfrak M , \mathfrak N )  = \
 +
\inf _ {AX \subset  \mathfrak N } \
 +
\sup _ {x \in \mathfrak M } \
 +
\| x - Ax \| ,
 +
$$
  
where the infimum is taken over all linear operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303030.png" /> mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303031.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303032.png" />. A linear operator realizing this infimum (if it exists) gives rise to a [[Best linear method|best linear method]] of approximation. The case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303033.png" /> is of particular interest.
+
where the infimum is taken over all linear operators $  A $
 +
mapping $  X $
 +
into $  \mathfrak N $.  
 +
A linear operator realizing this infimum (if it exists) gives rise to a [[Best linear method|best linear method]] of approximation. The case $  {\mathcal E} ( \mathfrak M , \mathfrak N ) = E ( \mathfrak M , \mathfrak N ) $
 +
is of particular interest.
  
3) Best approximation of a fixed set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303034.png" /> by a given class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303035.png" /> of approximating sets in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303036.png" />. It is assumed that in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303037.png" /> there are, in a definite sense,  "equally-expensive"  classes, e.g. containing the same amount of elements or having the same dimension. The first case leads to the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303038.png" />-entropy of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303039.png" /> (relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303040.png" />), the second — to the problem of calculating the [[Width|width]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303041.png" /> (in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303042.png" />), in particular,
+
3) Best approximation of a fixed set $  \mathfrak M \subset  X $
 +
by a given class $  \{ \mathfrak N \} $
 +
of approximating sets in $  X $.  
 +
It is assumed that in $  \{ \mathfrak N \} $
 +
there are, in a definite sense,  "equally-expensive"  classes, e.g. containing the same amount of elements or having the same dimension. The first case leads to the $  \epsilon $-
 +
entropy of $  \mathfrak M $(
 +
relative to $  X $),  
 +
the second — to the problem of calculating the [[Width|width]] of $  \mathfrak M $(
 +
in $  X $),  
 +
in particular,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303043.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
d _ {N} ( \mathfrak M , X)  = \
 +
\inf _ {\mathfrak N _ {N} } \
 +
E ( \mathfrak M , \mathfrak N _ {N} ),
 +
$$
  
 
and
 
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303044.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
d _ {N} ^ { \prime } ( \mathfrak M , X)  = \
 +
\inf _ {\mathfrak N _ {N} } \
 +
{\mathcal E} ( \mathfrak M , \mathfrak N _ {N} ),
 +
$$
  
where the infimum is taken over all subspaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303045.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303046.png" /> of fixed dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303047.png" /> (or over all possible translations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303048.png" /> of it). Thus in (1), (2) the problem is to determine the best (respectively the best linear) approximation tool of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303049.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303050.png" />.
+
where the infimum is taken over all subspaces $  \mathfrak N _ {N} $
 +
in $  X $
 +
of fixed dimension $  N $(
 +
or over all possible translations $  \mathfrak N _ {N} + a $
 +
of it). Thus in (1), (2) the problem is to determine the best (respectively the best linear) approximation tool of dimension $  N $
 +
for $  \mathfrak M $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N.I. [N.I. Akhiezer] Achiezer,  "Theory of approximation" , F. Ungar  (1956)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.L. Goncharov,  "The theory of interpolation and approximation of functions" , Moscow  (1954)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.K. Dzyadyk,  "Introduction to the theory of uniform approximation of functions by polynomials" , Moscow  (1977)  (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  S.M. Nikol'skii,  "Approximation of functions of several variables and imbedding theorems" , Springer  (1975)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  N.P. Korneichuk,  "Extremal problems in approximation theory" , Moscow  (1976)  (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  V.M. Tikhomirov,  "Some problems in approximation theory" , Moscow  (1976)  (In Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  A.F. Timan,  "Theory of approximation of functions of a real variable" , Pergamon  (1963)  (Translated from Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  J.R. Rice,  "The approximation of functions" , '''1–2''' , Addison-Wesley  (1964–1968)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">  P.J. Davis,  "Interpolation and approximation" , Blaisdell  (1965)</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top">  G.G. Lorentz,  "Approximation of functions" , Holt, Rinehart &amp; Winston  (1966)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N.I. [N.I. Akhiezer] Achiezer,  "Theory of approximation" , F. Ungar  (1956)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.L. Goncharov,  "The theory of interpolation and approximation of functions" , Moscow  (1954)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.K. Dzyadyk,  "Introduction to the theory of uniform approximation of functions by polynomials" , Moscow  (1977)  (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  S.M. Nikol'skii,  "Approximation of functions of several variables and imbedding theorems" , Springer  (1975)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  N.P. Korneichuk,  "Extremal problems in approximation theory" , Moscow  (1976)  (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  V.M. Tikhomirov,  "Some problems in approximation theory" , Moscow  (1976)  (In Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  A.F. Timan,  "Theory of approximation of functions of a real variable" , Pergamon  (1963)  (Translated from Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  J.R. Rice,  "The approximation of functions" , '''1–2''' , Addison-Wesley  (1964–1968)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">  P.J. Davis,  "Interpolation and approximation" , Blaisdell  (1965)</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top">  G.G. Lorentz,  "Approximation of functions" , Holt, Rinehart &amp; Winston  (1966)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
Line 44: Line 121:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  E.W. Cheney,  "Introduction to approximation theory" , Chelsea, reprint  (1982)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A.S.B. Holland,  B.N. Sahney,  "The general problem of approximation and spline functions" , R.E. Krieger  (1979)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  I.P. Natanson,  "Constructive function theory" , '''1–3''' , F. Ungar  (1964–1965)  (Translated from Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  I.M. Singer,  "Best approximation in normed linear spaces by elements of linear subspaces" , Springer  (1970)  (Translated from Rumanian)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  A. Pinkus,  "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013030/a01303051.png" />-widths in approximation theory" , Springer  (1985)  (Translated from Russian)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  E.W. Cheney,  "Introduction to approximation theory" , Chelsea, reprint  (1982)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A.S.B. Holland,  B.N. Sahney,  "The general problem of approximation and spline functions" , R.E. Krieger  (1979)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  I.P. Natanson,  "Constructive function theory" , '''1–3''' , F. Ungar  (1964–1965)  (Translated from Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  I.M. Singer,  "Best approximation in normed linear spaces by elements of linear subspaces" , Springer  (1970)  (Translated from Rumanian)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  A. Pinkus,  "$n$-widths in approximation theory" , Springer  (1985)  (Translated from Russian)</TD></TR></table>

Latest revision as of 07:23, 26 March 2023


The branch of mathematical analysis studying methods for approximating some mathematical objects by others and also studying questions related to the research and estimation of the error that arises here.

The main contents of approximation theory concerns the approximation of functions. Its foundations are laid by the work of P.L. Chebyshev (1854–1859) on best uniform approximation of functions by polynomials and by K. Weierstrass, who in 1885 established that in principle it is possible to approximate a continuous function on a finite interval by polynomials with arbitrary pre-given error. The development of approximation theory was to a large extent determined by the fundamental work of H. Lebesgue, Ch.J. de la Vallée-Poussin, S.N. Bernstein [S.N. Bernshtein], D. Jackson, J. Favard, A.N. Kolmogorov and S.M. Nikol'skii on the approximation of functions and function classes.

With the development of functional analysis, many problems in approximation theory were considered in the most general setting, e.g. as the approximation of elements of an arbitrary linear normed space $ X $. Three classes of problems arose here, corresponding more or less to the main chronological stages of development of research in approximation theory.

1) The approximation of a fixed element $ x \in X $ by elements of a fixed set $ \mathfrak N \subset X $. If

$$ E (x, \mathfrak N ) = \ \inf _ {u \in \mathfrak N } \ \| x - u \| $$

is taken as the approximation measure, i.e. the best approximation of $ x $ by $ \mathfrak N $, then, along with the investigation and estimation of $ E (x, \mathfrak N ) $, questions on the existence of an element of best approximation $ u _ {0} \in \mathfrak N $( for which $ \| x - u _ {0} \| = E (x, \mathfrak N ) $), its uniqueness and characteristic features arise. Any operator $ A $ mapping $ X $ into $ \mathfrak N $ gives rise to an approximation method with error $ \| x - Ax \| $. If $ \mathfrak N $ is a linear manifold, linear operators are of particular importance. For sequences $ \{ A _ {n} \} $ of such operators, the question of the conditions of convergence $ A _ {n} x \rightarrow x $ for any $ x \in X $ arises.

2) The approximation of a fixed set $ \mathfrak M \subset X $ by elements of another fixed set $ \mathfrak N \subset X $. The best approximation here is expressed by

$$ E ( \mathfrak M , \mathfrak N ) = \ \sup _ {x \in \mathfrak M } \ E (x, \mathfrak N ), $$

which gives the minimal possible error estimate when approximating an arbitrary $ x \in X $ by elements from $ \mathfrak N $. In concrete cases, the problem consists of estimating, or expressing exactly, $ E ( \mathfrak M , \mathfrak N ) $ by characteristic properties of the given sets $ \mathfrak M $ and $ \mathfrak N $. If the approximation is established by an operator $ A $, the supremum

$$ \sup _ {x \in \mathfrak M } \ \| x - Ax \| $$

is investigated, as well as (if $ \mathfrak N $ is a linear manifold)

$$ {\mathcal E} ( \mathfrak M , \mathfrak N ) = \ \inf _ {AX \subset \mathfrak N } \ \sup _ {x \in \mathfrak M } \ \| x - Ax \| , $$

where the infimum is taken over all linear operators $ A $ mapping $ X $ into $ \mathfrak N $. A linear operator realizing this infimum (if it exists) gives rise to a best linear method of approximation. The case $ {\mathcal E} ( \mathfrak M , \mathfrak N ) = E ( \mathfrak M , \mathfrak N ) $ is of particular interest.

3) Best approximation of a fixed set $ \mathfrak M \subset X $ by a given class $ \{ \mathfrak N \} $ of approximating sets in $ X $. It is assumed that in $ \{ \mathfrak N \} $ there are, in a definite sense, "equally-expensive" classes, e.g. containing the same amount of elements or having the same dimension. The first case leads to the $ \epsilon $- entropy of $ \mathfrak M $( relative to $ X $), the second — to the problem of calculating the width of $ \mathfrak M $( in $ X $), in particular,

$$ \tag{1 } d _ {N} ( \mathfrak M , X) = \ \inf _ {\mathfrak N _ {N} } \ E ( \mathfrak M , \mathfrak N _ {N} ), $$

and

$$ \tag{2 } d _ {N} ^ { \prime } ( \mathfrak M , X) = \ \inf _ {\mathfrak N _ {N} } \ {\mathcal E} ( \mathfrak M , \mathfrak N _ {N} ), $$

where the infimum is taken over all subspaces $ \mathfrak N _ {N} $ in $ X $ of fixed dimension $ N $( or over all possible translations $ \mathfrak N _ {N} + a $ of it). Thus in (1), (2) the problem is to determine the best (respectively the best linear) approximation tool of dimension $ N $ for $ \mathfrak M $.

References

[1] N.I. [N.I. Akhiezer] Achiezer, "Theory of approximation" , F. Ungar (1956) (Translated from Russian)
[2] V.L. Goncharov, "The theory of interpolation and approximation of functions" , Moscow (1954) (In Russian)
[3] V.K. Dzyadyk, "Introduction to the theory of uniform approximation of functions by polynomials" , Moscow (1977) (In Russian)
[4] S.M. Nikol'skii, "Approximation of functions of several variables and imbedding theorems" , Springer (1975) (Translated from Russian)
[5] N.P. Korneichuk, "Extremal problems in approximation theory" , Moscow (1976) (In Russian)
[6] V.M. Tikhomirov, "Some problems in approximation theory" , Moscow (1976) (In Russian)
[7] A.F. Timan, "Theory of approximation of functions of a real variable" , Pergamon (1963) (Translated from Russian)
[8] J.R. Rice, "The approximation of functions" , 1–2 , Addison-Wesley (1964–1968)
[9] P.J. Davis, "Interpolation and approximation" , Blaisdell (1965)
[10] G.G. Lorentz, "Approximation of functions" , Holt, Rinehart & Winston (1966)

Comments

There are many good books on approximation (and interpolation) theory. Below some of them are mentioned. [a1] contains extensive notes (related to the history of theorems and methods), as well as a useful bibliography. The more recent book [a2] also contains an extensive bibliography.

References

[a1] E.W. Cheney, "Introduction to approximation theory" , Chelsea, reprint (1982)
[a2] A.S.B. Holland, B.N. Sahney, "The general problem of approximation and spline functions" , R.E. Krieger (1979)
[a3] I.P. Natanson, "Constructive function theory" , 1–3 , F. Ungar (1964–1965) (Translated from Russian)
[a4] I.M. Singer, "Best approximation in normed linear spaces by elements of linear subspaces" , Springer (1970) (Translated from Rumanian)
[a5] A. Pinkus, "$n$-widths in approximation theory" , Springer (1985) (Translated from Russian)
How to Cite This Entry:
Approximation theory. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Approximation_theory&oldid=15409
This article was adapted from an original article by N.P. KorneichukV.P. Motornyi (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article