|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | An isomorphic mapping of an algebraic system onto itself. An automorphism of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a0116602.png" />-system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a0116603.png" /> is a one-to-one mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a0116604.png" /> of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a0116605.png" /> onto itself having the following properties:
| + | <!-- |
| + | a0116602.png |
| + | $#A+1 = 141 n = 1 |
| + | $#C+1 = 141 : ~/encyclopedia/old_files/data/A011/A.0101660 Algebraic system, automorphism of an |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a0116606.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a0116607.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
| + | An isomorphic mapping of an algebraic system onto itself. An automorphism of an $ \Omega $- |
| + | system $ \mathbf A = \langle A, \Omega \rangle $ |
| + | is a one-to-one mapping $ \phi $ |
| + | of the set $ A $ |
| + | onto itself having the following properties: |
| | | |
− | for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a0116608.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a0116609.png" /> and for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166010.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166011.png" />. In other words, an automorphism of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166012.png" />-system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166013.png" /> is an isomorphic mapping of the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166014.png" /> onto itself. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166015.png" /> be the set of all automorphisms of the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166016.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166017.png" />, the inverse mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166018.png" /> also has the properties (1) and (2), and for this reason <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166019.png" />. The product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166020.png" /> of two automorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166021.png" /> of the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166022.png" />, defined by the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166024.png" />, is again an automorphism of the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166025.png" />. Since multiplication of mappings is associative, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166026.png" /> is a group, known as the group of all automorphisms of the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166028.png" />; it is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166029.png" />. The subgroups of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166030.png" /> are simply called automorphism groups of the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166032.png" />.
| + | $$ \tag{1 } |
| + | \phi ( F ( x _ {1} \dots x _ {n} ) ) = F ( \phi ( x _ {1} ) \dots |
| + | \phi ( x _ {n} ) ) , |
| + | $$ |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166033.png" /> be an automorphism of the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166034.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166035.png" /> be a congruence of this system. Putting
| + | $$ \tag{2 } |
| + | P ( x _ {1} \dots x _ {m} ) \iff P ( \phi ( x _ {1} ) \dots \phi ( x _ {m} ) ), |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166036.png" /></td> </tr></table>
| + | for all $ x _ {1} , x _ {2} \dots $ |
| + | from $ A $ |
| + | and for all $ F, P $ |
| + | from $ \Omega $. |
| + | In other words, an automorphism of an $ \Omega $- |
| + | system $ \mathbf A $ |
| + | is an isomorphic mapping of the system $ \mathbf A $ |
| + | onto itself. Let $ G $ |
| + | be the set of all automorphisms of the system $ \mathbf A $. |
| + | If $ \phi \in G $, |
| + | the inverse mapping $ \phi ^ {-1} $ |
| + | also has the properties (1) and (2), and for this reason $ \phi ^ {-1} \in G $. |
| + | The product $ \alpha = \phi \psi $ |
| + | of two automorphisms $ \phi , \psi $ |
| + | of the system $ \mathbf A $, |
| + | defined by the formula $ \alpha (x) = \psi ( \phi (x) ) $, |
| + | $ x \in A $, |
| + | is again an automorphism of the system $ \mathbf A $. |
| + | Since multiplication of mappings is associative, $ \langle G, \cdot , {} ^ {-1} \rangle $ |
| + | is a group, known as the group of all automorphisms of the system $ \mathbf A $; |
| + | it is denoted by $ \mathop{\rm Aut} ( \mathbf A ) $. |
| + | The subgroups of the group $ \mathop{\rm Aut} ( \mathbf A ) $ |
| + | are simply called automorphism groups of the system $ \mathbf A $. |
| | | |
− | one again obtains a congruence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166037.png" /> of the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166038.png" />. The automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166039.png" /> is known as an IC-automorphism if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166040.png" /> for any congruence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166041.png" /> of the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166042.png" />. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166043.png" /> of all IC-automorphisms of the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166044.png" /> is a normal subgroup of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166045.png" />, and the quotient group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166046.png" /> is isomorphic to an automorphism group of the lattice of all congruences of the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166047.png" /> [[#References|[1]]]. In particular, any inner automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166048.png" /> of a group defined by a fixed element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166049.png" /> of this group is an IC-automorphism. However, the example of a cyclic group of prime order shows that not all IC-automorphisms of a group are inner.
| + | Let $ \phi $ |
| + | be an automorphism of the system $ \mathbf A $ |
| + | and let $ \theta $ |
| + | be a congruence of this system. Putting |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166050.png" /> be a non-trivial variety of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166051.png" />-systems or any other class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166052.png" />-systems comprising free systems of any (non-zero) rank. An automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166053.png" /> of a system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166054.png" /> of the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166055.png" /> is called an I-automorphism if there exists a term <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166056.png" /> of the signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166057.png" />, in the unknowns <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166058.png" />, for which: 1) in the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166059.png" /> there exist elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166060.png" /> such that for each element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166061.png" /> the equality
| + | $$ |
| + | ( x , y ) \in \theta _ \phi \iff ( \phi ^ {-1} ( x ) ,\ |
| + | \phi ^ {-1} ( y ) ) \in \theta ,\ x , y \in \mathbf A , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166062.png" /></td> </tr></table>
| + | one again obtains a congruence $ \theta _ \phi $ |
| + | of the system $ \mathbf A $. |
| + | The automorphism $ \phi $ |
| + | is known as an IC-automorphism if $ \theta _ \phi = \theta $ |
| + | for any congruence $ \theta $ |
| + | of the system $ \mathbf A $. |
| + | The set $ \mathop{\rm IC} ( \mathbf A ) $ |
| + | of all IC-automorphisms of the system $ \mathbf A $ |
| + | is a normal subgroup of the group $ \mathop{\rm Aut} ( \mathbf A ) $, |
| + | and the quotient group $ \mathop{\rm Aut} ( \mathbf A ) / \mathop{\rm IC} ( \mathbf A ) $ |
| + | is isomorphic to an automorphism group of the lattice of all congruences of the system $ \mathbf A $[[#References|[1]]]. In particular, any inner automorphism $ x \rightarrow a ^ {-1} xa $ |
| + | of a group defined by a fixed element $ a $ |
| + | of this group is an IC-automorphism. However, the example of a cyclic group of prime order shows that not all IC-automorphisms of a group are inner. |
| | | |
− | is valid; and 2) for any system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166063.png" /> of the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166064.png" /> the mapping
| + | Let $ \mathfrak K $ |
| + | be a non-trivial variety of $ \Omega $- |
| + | systems or any other class of $ \Omega $- |
| + | systems comprising free systems of any (non-zero) rank. An automorphism $ \phi $ |
| + | of a system $ \mathbf A $ |
| + | of the class $ \mathfrak K $ |
| + | is called an I-automorphism if there exists a term $ f _ \phi (x _ {1} \dots x _ {n} ) $ |
| + | of the signature $ \Omega $, |
| + | in the unknowns $ x _ {1} \dots x _ {n} $, |
| + | for which: 1) in the system $ \mathbf A $ |
| + | there exist elements $ a _ {2} \dots a _ {n} $ |
| + | such that for each element $ x \in A $ |
| + | the equality |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166065.png" /></td> </tr></table>
| + | $$ |
| + | \phi ( x ) = f _ \phi ( x , a _ {2} \dots a _ {n} ) |
| + | $$ |
| | | |
− | is an automorphism of this system for any arbitrary selection of elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166066.png" /> in the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166067.png" />. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166068.png" /> of all I-automorphisms for each system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166069.png" /> of the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166070.png" /> is a normal subgroup of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166071.png" />. In the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166072.png" /> of all groups the concept of an I-automorphism coincides with the concept of an inner automorphism of the group [[#References|[2]]]. For the more general concept of a formula automorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166074.png" />-systems, see [[#References|[3]]]. | + | is valid; and 2) for any system $ \mathbf B $ |
| + | of the class $ \mathfrak K $ |
| + | the mapping |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166075.png" /> be an algebraic system. By replacing each basic operation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166076.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166077.png" /> by the predicate
| + | $$ |
| + | x \rightarrow f _ \phi ( x , x _ {2} \dots x _ {n} ) |
| + | \ ( x \in B ) |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166078.png" /></td> </tr></table>
| + | is an automorphism of this system for any arbitrary selection of elements $ x _ {2} \dots x _ {n} $ |
| + | in the system $ \mathbf B $. |
| + | The set $ \textrm{ I } ( \mathbf A ) $ |
| + | of all I-automorphisms for each system $ \mathbf A $ |
| + | of the class $ \mathfrak K $ |
| + | is a normal subgroup of the group $ \mathop{\rm Aut} ( \mathbf A ) $. |
| + | In the class $ \mathfrak K $ |
| + | of all groups the concept of an I-automorphism coincides with the concept of an inner automorphism of the group [[#References|[2]]]. For the more general concept of a formula automorphism of $ \Omega $- |
| + | systems, see [[#References|[3]]]. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166079.png" /></td> </tr></table>
| + | Let $ \mathbf A $ |
| + | be an algebraic system. By replacing each basic operation $ F $ |
| + | in $ \mathbf A $ |
| + | by the predicate |
| | | |
− | one obtains the so-called model <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166081.png" /> which represents the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166082.png" />. The equality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166083.png" /> is valid. If the systems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166084.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166085.png" /> have a common carrier <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166086.png" />, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166087.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166088.png" />. If the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166089.png" />-system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166090.png" /> with a finite number of generators is finitely approximable, the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166091.png" /> is also finitely approximable (cf. [[#References|[1]]]). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166092.png" /> be a class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166093.png" />-systems and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166094.png" /> be the class of all isomorphic copies of the groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166095.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166096.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166097.png" /> be the class of subgroups of groups from the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166098.png" />. The class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a01166099.png" /> consists of groups which are isomorphically imbeddable into the groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660100.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660101.png" />. | + | $$ |
| + | R ( x _ {1} \dots x _ {n} , y ) \iff \ |
| + | F ( x _ {1} \dots x _ {n} ) = y |
| + | $$ |
| + | |
| + | $$ |
| + | ( x _ {1} \dots x _ {n} , y \in A ) , |
| + | $$ |
| + | |
| + | one obtains the so-called model $ \mathbf A ^ {*} $ |
| + | which represents the system $ \mathbf A $. |
| + | The equality $ \mathop{\rm Aut} ( \mathbf A ^ {*} ) = \mathop{\rm Aut} ( \mathbf A ) $ |
| + | is valid. If the systems $ \mathbf A = \langle A, \Omega \rangle $ |
| + | and $ \mathbf A ^ \prime = \langle A , \Omega ^ \prime \rangle $ |
| + | have a common carrier $ A $, |
| + | and if $ \Omega \subset \Omega ^ \prime $, |
| + | then $ \mathop{\rm Aut} ( \mathbf A ) \supseteq \mathop{\rm Aut} ( \mathbf A ^ \prime ) $. |
| + | If the $ \Omega $- |
| + | system $ \mathbf A $ |
| + | with a finite number of generators is finitely approximable, the group $ \mathop{\rm Aut} ( \mathbf A ) $ |
| + | is also finitely approximable (cf. [[#References|[1]]]). Let $ \mathfrak K $ |
| + | be a class of $ \Omega $- |
| + | systems and let $ \mathop{\rm Aut} ( \mathfrak K ) $ |
| + | be the class of all isomorphic copies of the groups $ \mathop{\rm Aut} ( \mathbf A ) $, |
| + | $ \mathbf A \in \mathfrak K $, |
| + | and let $ \mathop{\rm SAut} ( \mathfrak K ) $ |
| + | be the class of subgroups of groups from the class $ \mathop{\rm Aut} ( \mathfrak K ) $. |
| + | The class $ \mathop{\rm SAut} ( \mathfrak K ) $ |
| + | consists of groups which are isomorphically imbeddable into the groups $ \mathop{\rm Aut} ( \mathbf A ) $, |
| + | $ \mathbf A \in \mathfrak K $. |
| | | |
| The following two problems arose in the study of automorphism groups of algebraic systems. | | The following two problems arose in the study of automorphism groups of algebraic systems. |
| | | |
− | 1) Given a class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660102.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660103.png" />-systems, what can one say about the classes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660104.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660105.png" />? | + | 1) Given a class $ \mathfrak K $ |
| + | of $ \Omega $- |
| + | systems, what can one say about the classes $ \mathop{\rm Aut} ( \mathfrak K ) $ |
| + | and $ \mathop{\rm SAut} ( \mathfrak K ) $? |
| | | |
− | 2) Let an (abstract) class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660106.png" /> of groups be given. Does there exist a class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660107.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660108.png" />-systems with a given signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660109.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660110.png" /> or even <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660111.png" />? It has been proved that for any axiomatizable class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660112.png" /> of models the class of groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660113.png" /> is universally axiomatizable [[#References|[1]]]. It has also been proved [[#References|[1]]], [[#References|[4]]] that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660114.png" /> is an axiomatizable class of models comprising infinite models, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660115.png" /> is a totally ordered set and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660116.png" /> is an automorphism group of the model <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660117.png" />, then there exists a model <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660118.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660119.png" />, and for each element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660120.png" /> there exists an automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660121.png" /> of the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660122.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660123.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660124.png" />. The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660125.png" /> is called 1) universal if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660126.png" /> for any axiomatizable class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660127.png" /> of models comprising infinite models; and 2) a group of ordered automorphisms of an ordered group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660129.png" /> (cf. [[Totally ordered group|Totally ordered group]]) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660130.png" /> is isomorphic to some automorphism group of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660131.png" /> which preserves the given total order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660132.png" /> of this group (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660133.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660134.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660135.png" />). | + | 2) Let an (abstract) class $ K $ |
| + | of groups be given. Does there exist a class $ \mathfrak K $ |
| + | of $ \Omega $- |
| + | systems with a given signature $ \Omega $ |
| + | such that $ K = \mathop{\rm Aut} ( \mathfrak K ) $ |
| + | or even $ K = \mathop{\rm SAut} ( \mathfrak K ) $? |
| + | It has been proved that for any axiomatizable class $ \mathfrak K $ |
| + | of models the class of groups $ \mathop{\rm SAut} ( \mathfrak K ) $ |
| + | is universally axiomatizable [[#References|[1]]]. It has also been proved [[#References|[1]]], [[#References|[4]]] that if $ \mathfrak K $ |
| + | is an axiomatizable class of models comprising infinite models, if $ \langle B, \leq \rangle $ |
| + | is a totally ordered set and if $ \mathbf G $ |
| + | is an automorphism group of the model $ \langle B, \leq \rangle $, |
| + | then there exists a model $ \mathbf A \in \mathfrak K $ |
| + | such that $ A \supseteq B $, |
| + | and for each element $ g \in G $ |
| + | there exists an automorphism $ \phi $ |
| + | of the system $ \mathbf A $ |
| + | such that $ g(x) = \phi (x) $ |
| + | for all $ x \in B $. |
| + | The group $ G $ |
| + | is called 1) universal if $ G \in \mathop{\rm SAut} ( \mathfrak K ) $ |
| + | for any axiomatizable class $ \mathfrak K $ |
| + | of models comprising infinite models; and 2) a group of ordered automorphisms of an ordered group $ \mathbf H $( |
| + | cf. [[Totally ordered group|Totally ordered group]]) if $ \mathbf G $ |
| + | is isomorphic to some automorphism group of the group $ \mathbf H $ |
| + | which preserves the given total order $ \leq $ |
| + | of this group (i.e. $ a \leq b \Rightarrow \phi (a) \leq \phi (b) $ |
| + | for all $ a, b \in H $, |
| + | $ \phi \in G $). |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660136.png" /> be the class of totally ordered sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660137.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660138.png" /> be the class of universal groups, let RO be the class of right-ordered groups and let OA be the class of ordered automorphism groups of free Abelian groups. Then [[#References|[4]]], [[#References|[5]]], [[#References|[6]]]: | + | Let $ l $ |
| + | be the class of totally ordered sets $ \langle M, \leq \rangle $, |
| + | let $ \mathfrak U $ |
| + | be the class of universal groups, let RO be the class of right-ordered groups and let OA be the class of ordered automorphism groups of free Abelian groups. Then [[#References|[4]]], [[#References|[5]]], [[#References|[6]]]: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660139.png" /></td> </tr></table>
| + | $$ |
| + | \mathop{\rm SAut} ( l ) = \mathfrak U = \mathop{\rm RO} = \mathop{\rm OA} . |
| + | $$ |
| | | |
− | Each group is isomorphic to the group of all automorphisms of some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660140.png" />-algebra. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660141.png" /> is the class of all rings, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660142.png" /> is the class of all groups [[#References|[1]]]. However, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660143.png" /> is the class of all groups, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660144.png" />; for example, the cyclic groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660145.png" /> of the respective orders 3, 5 and 7 do not belong to the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660146.png" />. There is also no topological group whose group of all topological automorphisms is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660147.png" /> [[#References|[7]]]. | + | Each group is isomorphic to the group of all automorphisms of some $ \Omega $- |
| + | algebra. If $ \mathfrak K $ |
| + | is the class of all rings, $ \mathop{\rm Aut} ( \mathfrak K ) $ |
| + | is the class of all groups [[#References|[1]]]. However, if $ \mathfrak K $ |
| + | is the class of all groups, $ \mathop{\rm Aut} ( \mathfrak K ) \neq \mathfrak K $; |
| + | for example, the cyclic groups $ \mathbf C _ {3} , \mathbf C _ {5} , \mathbf C _ {7} $ |
| + | of the respective orders 3, 5 and 7 do not belong to the class $ \mathop{\rm Aut} ( \mathfrak K ) $. |
| + | There is also no topological group whose group of all topological automorphisms is isomorphic to $ \mathbf C _ {5} $[[#References|[7]]]. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> B.I. Plotkin, "Groups of automorphisms of algebraic systems" , Wolters-Noordhoff (1972)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> B. Csákány, "Inner automorphisms of universal algebras" ''Publ. Math. Debrecen'' , '''12''' (1965) pp. 331–333</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J. Grant, "Automorphisms definable by formulas" ''Pacific J. Math.'' , '''44''' (1973) pp. 107–115</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> M.O. Rabin, "Universal groups of automorphisms of models" , ''Theory of models'' , North-Holland (1965) pp. 274–284</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> P.M. Cohn, "Groups of order automorphisms of ordered sets" ''Mathematika'' , '''4''' (1957) pp. 41–50</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> D.M. Smirnov, "Right-ordered groups" ''Algebra i Logika'' , '''5''' : 6 (1966) pp. 41–59 (In Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> R.J. Wille, "The existence of a topological group with automorphism group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660148.png" />" ''Quart. J. Math. Oxford (2)'' , '''18''' (1967) pp. 53–57</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> B.I. Plotkin, "Groups of automorphisms of algebraic systems" , Wolters-Noordhoff (1972)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> B. Csákány, "Inner automorphisms of universal algebras" ''Publ. Math. Debrecen'' , '''12''' (1965) pp. 331–333</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J. Grant, "Automorphisms definable by formulas" ''Pacific J. Math.'' , '''44''' (1973) pp. 107–115</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> M.O. Rabin, "Universal groups of automorphisms of models" , ''Theory of models'' , North-Holland (1965) pp. 274–284</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> P.M. Cohn, "Groups of order automorphisms of ordered sets" ''Mathematika'' , '''4''' (1957) pp. 41–50</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> D.M. Smirnov, "Right-ordered groups" ''Algebra i Logika'' , '''5''' : 6 (1966) pp. 41–59 (In Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> R.J. Wille, "The existence of a topological group with automorphism group $C_7$" ''Quart. J. Math. Oxford (2)'' , '''18''' (1967) pp. 53–57</TD></TR></table> |
An isomorphic mapping of an algebraic system onto itself. An automorphism of an $ \Omega $-
system $ \mathbf A = \langle A, \Omega \rangle $
is a one-to-one mapping $ \phi $
of the set $ A $
onto itself having the following properties:
$$ \tag{1 }
\phi ( F ( x _ {1} \dots x _ {n} ) ) = F ( \phi ( x _ {1} ) \dots
\phi ( x _ {n} ) ) ,
$$
$$ \tag{2 }
P ( x _ {1} \dots x _ {m} ) \iff P ( \phi ( x _ {1} ) \dots \phi ( x _ {m} ) ),
$$
for all $ x _ {1} , x _ {2} \dots $
from $ A $
and for all $ F, P $
from $ \Omega $.
In other words, an automorphism of an $ \Omega $-
system $ \mathbf A $
is an isomorphic mapping of the system $ \mathbf A $
onto itself. Let $ G $
be the set of all automorphisms of the system $ \mathbf A $.
If $ \phi \in G $,
the inverse mapping $ \phi ^ {-1} $
also has the properties (1) and (2), and for this reason $ \phi ^ {-1} \in G $.
The product $ \alpha = \phi \psi $
of two automorphisms $ \phi , \psi $
of the system $ \mathbf A $,
defined by the formula $ \alpha (x) = \psi ( \phi (x) ) $,
$ x \in A $,
is again an automorphism of the system $ \mathbf A $.
Since multiplication of mappings is associative, $ \langle G, \cdot , {} ^ {-1} \rangle $
is a group, known as the group of all automorphisms of the system $ \mathbf A $;
it is denoted by $ \mathop{\rm Aut} ( \mathbf A ) $.
The subgroups of the group $ \mathop{\rm Aut} ( \mathbf A ) $
are simply called automorphism groups of the system $ \mathbf A $.
Let $ \phi $
be an automorphism of the system $ \mathbf A $
and let $ \theta $
be a congruence of this system. Putting
$$
( x , y ) \in \theta _ \phi \iff ( \phi ^ {-1} ( x ) ,\
\phi ^ {-1} ( y ) ) \in \theta ,\ x , y \in \mathbf A ,
$$
one again obtains a congruence $ \theta _ \phi $
of the system $ \mathbf A $.
The automorphism $ \phi $
is known as an IC-automorphism if $ \theta _ \phi = \theta $
for any congruence $ \theta $
of the system $ \mathbf A $.
The set $ \mathop{\rm IC} ( \mathbf A ) $
of all IC-automorphisms of the system $ \mathbf A $
is a normal subgroup of the group $ \mathop{\rm Aut} ( \mathbf A ) $,
and the quotient group $ \mathop{\rm Aut} ( \mathbf A ) / \mathop{\rm IC} ( \mathbf A ) $
is isomorphic to an automorphism group of the lattice of all congruences of the system $ \mathbf A $[1]. In particular, any inner automorphism $ x \rightarrow a ^ {-1} xa $
of a group defined by a fixed element $ a $
of this group is an IC-automorphism. However, the example of a cyclic group of prime order shows that not all IC-automorphisms of a group are inner.
Let $ \mathfrak K $
be a non-trivial variety of $ \Omega $-
systems or any other class of $ \Omega $-
systems comprising free systems of any (non-zero) rank. An automorphism $ \phi $
of a system $ \mathbf A $
of the class $ \mathfrak K $
is called an I-automorphism if there exists a term $ f _ \phi (x _ {1} \dots x _ {n} ) $
of the signature $ \Omega $,
in the unknowns $ x _ {1} \dots x _ {n} $,
for which: 1) in the system $ \mathbf A $
there exist elements $ a _ {2} \dots a _ {n} $
such that for each element $ x \in A $
the equality
$$
\phi ( x ) = f _ \phi ( x , a _ {2} \dots a _ {n} )
$$
is valid; and 2) for any system $ \mathbf B $
of the class $ \mathfrak K $
the mapping
$$
x \rightarrow f _ \phi ( x , x _ {2} \dots x _ {n} )
\ ( x \in B )
$$
is an automorphism of this system for any arbitrary selection of elements $ x _ {2} \dots x _ {n} $
in the system $ \mathbf B $.
The set $ \textrm{ I } ( \mathbf A ) $
of all I-automorphisms for each system $ \mathbf A $
of the class $ \mathfrak K $
is a normal subgroup of the group $ \mathop{\rm Aut} ( \mathbf A ) $.
In the class $ \mathfrak K $
of all groups the concept of an I-automorphism coincides with the concept of an inner automorphism of the group [2]. For the more general concept of a formula automorphism of $ \Omega $-
systems, see [3].
Let $ \mathbf A $
be an algebraic system. By replacing each basic operation $ F $
in $ \mathbf A $
by the predicate
$$
R ( x _ {1} \dots x _ {n} , y ) \iff \
F ( x _ {1} \dots x _ {n} ) = y
$$
$$
( x _ {1} \dots x _ {n} , y \in A ) ,
$$
one obtains the so-called model $ \mathbf A ^ {*} $
which represents the system $ \mathbf A $.
The equality $ \mathop{\rm Aut} ( \mathbf A ^ {*} ) = \mathop{\rm Aut} ( \mathbf A ) $
is valid. If the systems $ \mathbf A = \langle A, \Omega \rangle $
and $ \mathbf A ^ \prime = \langle A , \Omega ^ \prime \rangle $
have a common carrier $ A $,
and if $ \Omega \subset \Omega ^ \prime $,
then $ \mathop{\rm Aut} ( \mathbf A ) \supseteq \mathop{\rm Aut} ( \mathbf A ^ \prime ) $.
If the $ \Omega $-
system $ \mathbf A $
with a finite number of generators is finitely approximable, the group $ \mathop{\rm Aut} ( \mathbf A ) $
is also finitely approximable (cf. [1]). Let $ \mathfrak K $
be a class of $ \Omega $-
systems and let $ \mathop{\rm Aut} ( \mathfrak K ) $
be the class of all isomorphic copies of the groups $ \mathop{\rm Aut} ( \mathbf A ) $,
$ \mathbf A \in \mathfrak K $,
and let $ \mathop{\rm SAut} ( \mathfrak K ) $
be the class of subgroups of groups from the class $ \mathop{\rm Aut} ( \mathfrak K ) $.
The class $ \mathop{\rm SAut} ( \mathfrak K ) $
consists of groups which are isomorphically imbeddable into the groups $ \mathop{\rm Aut} ( \mathbf A ) $,
$ \mathbf A \in \mathfrak K $.
The following two problems arose in the study of automorphism groups of algebraic systems.
1) Given a class $ \mathfrak K $
of $ \Omega $-
systems, what can one say about the classes $ \mathop{\rm Aut} ( \mathfrak K ) $
and $ \mathop{\rm SAut} ( \mathfrak K ) $?
2) Let an (abstract) class $ K $
of groups be given. Does there exist a class $ \mathfrak K $
of $ \Omega $-
systems with a given signature $ \Omega $
such that $ K = \mathop{\rm Aut} ( \mathfrak K ) $
or even $ K = \mathop{\rm SAut} ( \mathfrak K ) $?
It has been proved that for any axiomatizable class $ \mathfrak K $
of models the class of groups $ \mathop{\rm SAut} ( \mathfrak K ) $
is universally axiomatizable [1]. It has also been proved [1], [4] that if $ \mathfrak K $
is an axiomatizable class of models comprising infinite models, if $ \langle B, \leq \rangle $
is a totally ordered set and if $ \mathbf G $
is an automorphism group of the model $ \langle B, \leq \rangle $,
then there exists a model $ \mathbf A \in \mathfrak K $
such that $ A \supseteq B $,
and for each element $ g \in G $
there exists an automorphism $ \phi $
of the system $ \mathbf A $
such that $ g(x) = \phi (x) $
for all $ x \in B $.
The group $ G $
is called 1) universal if $ G \in \mathop{\rm SAut} ( \mathfrak K ) $
for any axiomatizable class $ \mathfrak K $
of models comprising infinite models; and 2) a group of ordered automorphisms of an ordered group $ \mathbf H $(
cf. Totally ordered group) if $ \mathbf G $
is isomorphic to some automorphism group of the group $ \mathbf H $
which preserves the given total order $ \leq $
of this group (i.e. $ a \leq b \Rightarrow \phi (a) \leq \phi (b) $
for all $ a, b \in H $,
$ \phi \in G $).
Let $ l $
be the class of totally ordered sets $ \langle M, \leq \rangle $,
let $ \mathfrak U $
be the class of universal groups, let RO be the class of right-ordered groups and let OA be the class of ordered automorphism groups of free Abelian groups. Then [4], [5], [6]:
$$
\mathop{\rm SAut} ( l ) = \mathfrak U = \mathop{\rm RO} = \mathop{\rm OA} .
$$
Each group is isomorphic to the group of all automorphisms of some $ \Omega $-
algebra. If $ \mathfrak K $
is the class of all rings, $ \mathop{\rm Aut} ( \mathfrak K ) $
is the class of all groups [1]. However, if $ \mathfrak K $
is the class of all groups, $ \mathop{\rm Aut} ( \mathfrak K ) \neq \mathfrak K $;
for example, the cyclic groups $ \mathbf C _ {3} , \mathbf C _ {5} , \mathbf C _ {7} $
of the respective orders 3, 5 and 7 do not belong to the class $ \mathop{\rm Aut} ( \mathfrak K ) $.
There is also no topological group whose group of all topological automorphisms is isomorphic to $ \mathbf C _ {5} $[7].
References
[1] | B.I. Plotkin, "Groups of automorphisms of algebraic systems" , Wolters-Noordhoff (1972) |
[2] | B. Csákány, "Inner automorphisms of universal algebras" Publ. Math. Debrecen , 12 (1965) pp. 331–333 |
[3] | J. Grant, "Automorphisms definable by formulas" Pacific J. Math. , 44 (1973) pp. 107–115 |
[4] | M.O. Rabin, "Universal groups of automorphisms of models" , Theory of models , North-Holland (1965) pp. 274–284 |
[5] | P.M. Cohn, "Groups of order automorphisms of ordered sets" Mathematika , 4 (1957) pp. 41–50 |
[6] | D.M. Smirnov, "Right-ordered groups" Algebra i Logika , 5 : 6 (1966) pp. 41–59 (In Russian) |
[7] | R.J. Wille, "The existence of a topological group with automorphism group $C_7$" Quart. J. Math. Oxford (2) , 18 (1967) pp. 53–57 |