Namespaces
Variants
Actions

Difference between revisions of "Shuffle algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110110/s1101101.png" /> be a set (alphabet) and consider the [[Free associative algebra|free associative algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110110/s1101102.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110110/s1101103.png" /> over the integers, provided with the [[Hopf algebra|Hopf algebra]] structure given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110110/s1101104.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110110/s1101105.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110110/s1101106.png" />. As an Abelian group, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110110/s1101107.png" /> is free and graded. Its graded dual is again a Hopf algebra, sometimes called the shuffle-cut Hopf algebra or merge-cut Hopf algebra. Its underlying algebra is the shuffle algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110110/s1101108.png" />. As an Abelian group, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110110/s1101109.png" /> has as basis the elements of the free monoid (see [[Free semi-group|Free semi-group]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110110/s11011010.png" /> of all words in the alphabet <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110110/s11011011.png" />. The product of two such words <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110110/s11011012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110110/s11011013.png" /> is the sum of all words of length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110110/s11011014.png" /> that are permutations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110110/s11011015.png" /> such that both <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110110/s11011016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110110/s11011017.png" /> appear in their original order. E.g.,
+
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110110/s11011018.png" /></td> </tr></table>
+
Let $X = \{X_i : i \in I \}$ be a set (alphabet) and consider the [[free associative algebra]] $\mathbb{Z}[X]$ on $X$ over the integers, provided with the [[Hopf algebra]] structure given by $\mu(X_i) = X_i \otimes 1 + 1 \otimes X_i$, $\epsilon(X_i) = 0$, $\iota(X_i) = -X_i$. As an Abelian group, $\mathbb{Z}[X]$ is free and graded. Its graded dual is again a Hopf algebra, sometimes called the shuffle-cut Hopf algebra or merge-cut Hopf algebra. Its underlying algebra is the shuffle algebra $\mathrm{Sh}(X)$. As an Abelian group, $\mathrm{Sh}(X)$ has as basis the elements of the [[free monoid]] $X^*$ of all words over the alphabet $X$. The product of two such words $u = a_1\cdots a_s$, $v = b_1\cdots b_t$ is the sum of all words of length $s+t$ that are permutations of $a_1,\ldots, a_s, b_1, \ldots, b_t$  such that both $a_1,\ldots, a_s$ and $b_1, \ldots, b_t$ appear in their original order. E.g.,
 +
$$
 +
aa \cdot b = aab + aba + baa
 +
$$
 +
$$
 +
aa \cdot a = 3aaa
 +
$$
 +
$$
 +
a_1a_2 \cdot b_1b_2 = a_1a_2 b_1b_2 + a_1b_1a_2b_2 + a_1b_1b_2a_2 + b_1a_1a_2b_2 + b_1a_1b_2a_2 + b_1b_2a_1a_2
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110110/s11011019.png" /></td> </tr></table>
+
This is the shuffle product. It derives its name from the familiar riffle shuffle of decks of playing cards.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110110/s11011020.png" /></td> </tr></table>
+
As an algebra over $\mathbb{Q}$, $\mathrm{Sh}(X)$ is a free commutative algebra with as free commutative generators the [[Lyndon word]]s on $X$. I.e.,
 +
$$
 +
\mathrm{Sh}(X) \otimes_{\mathbb{Z}} \mathbb{Q} = \mathbb{Q}[w \in X^* : w\ \text{a Lyndon word}]
 +
$$
 +
[[#References|[a1]]]. It is not true that $\mathrm{Sh}(X)$ is free over $\mathbb{Z}$.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110110/s11011021.png" /></td> </tr></table>
+
====Comments====
 +
The shuffle product is commutative and associative. It may be defined inductively for $a,b \in X$ by
 +
$$
 +
ua \cdot vb = (u \cdot vb)a + (ua \cdot v)b \ .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110110/s11011022.png" /></td> </tr></table>
+
This is also related to the notion of zinbiel algebra.
 
 
This is the shuffle product. It derives its name from the familiar rifle shuffle of decks of playing cards.
 
 
 
As an algebra over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110110/s11011023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110110/s11011024.png" /> is a free commutative algebra with as free commutative generators the Lyndon words in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110110/s11011025.png" />, see [[Lyndon word|Lyndon word]]. I.e.,
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110110/s11011026.png" /></td> </tr></table>
 
 
 
[[#References|[a1]]]. It is not true that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110110/s11011027.png" /> is free over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110110/s11011028.png" />.
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  C. Reutenauer,  "Free Lie algebras" , Oxford Univ. Press  (1993)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  C. Reutenauer,  "Free Lie algebras" , Oxford Univ. Press  (1993) {{ZBL|0798.17001}}</TD></TR>
 +
<TR><TD valign="top">[b1]</TD> <TD valign="top">M. Lothaire, ''Combinatorics on Words'', Cambridge University Press (1997) {{ISBN|0-521-59924-5}} {{ZBL|0874.20040}}</TD></TR>
 +
</table>

Latest revision as of 13:44, 20 March 2023


Let $X = \{X_i : i \in I \}$ be a set (alphabet) and consider the free associative algebra $\mathbb{Z}[X]$ on $X$ over the integers, provided with the Hopf algebra structure given by $\mu(X_i) = X_i \otimes 1 + 1 \otimes X_i$, $\epsilon(X_i) = 0$, $\iota(X_i) = -X_i$. As an Abelian group, $\mathbb{Z}[X]$ is free and graded. Its graded dual is again a Hopf algebra, sometimes called the shuffle-cut Hopf algebra or merge-cut Hopf algebra. Its underlying algebra is the shuffle algebra $\mathrm{Sh}(X)$. As an Abelian group, $\mathrm{Sh}(X)$ has as basis the elements of the free monoid $X^*$ of all words over the alphabet $X$. The product of two such words $u = a_1\cdots a_s$, $v = b_1\cdots b_t$ is the sum of all words of length $s+t$ that are permutations of $a_1,\ldots, a_s, b_1, \ldots, b_t$ such that both $a_1,\ldots, a_s$ and $b_1, \ldots, b_t$ appear in their original order. E.g., $$ aa \cdot b = aab + aba + baa $$ $$ aa \cdot a = 3aaa $$ $$ a_1a_2 \cdot b_1b_2 = a_1a_2 b_1b_2 + a_1b_1a_2b_2 + a_1b_1b_2a_2 + b_1a_1a_2b_2 + b_1a_1b_2a_2 + b_1b_2a_1a_2 $$

This is the shuffle product. It derives its name from the familiar riffle shuffle of decks of playing cards.

As an algebra over $\mathbb{Q}$, $\mathrm{Sh}(X)$ is a free commutative algebra with as free commutative generators the Lyndon words on $X$. I.e., $$ \mathrm{Sh}(X) \otimes_{\mathbb{Z}} \mathbb{Q} = \mathbb{Q}[w \in X^* : w\ \text{a Lyndon word}] $$ [a1]. It is not true that $\mathrm{Sh}(X)$ is free over $\mathbb{Z}$.

Comments

The shuffle product is commutative and associative. It may be defined inductively for $a,b \in X$ by $$ ua \cdot vb = (u \cdot vb)a + (ua \cdot v)b \ . $$

This is also related to the notion of zinbiel algebra.

References

[a1] C. Reutenauer, "Free Lie algebras" , Oxford Univ. Press (1993) Zbl 0798.17001
[b1] M. Lothaire, Combinatorics on Words, Cambridge University Press (1997) ISBN 0-521-59924-5 Zbl 0874.20040
How to Cite This Entry:
Shuffle algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Shuffle_algebra&oldid=11572
This article was adapted from an original article by M. Hazewinkel (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article