Difference between revisions of "Lambert series"
m (refs) |
m (→References: zbl link) |
||
Line 25: | Line 25: | ||
<table> | <table> | ||
<TR><TD valign="top">[1]</TD> <TD valign="top"> J.H. Lambert, "Opera Mathematica" , '''1–2''' , O. Füssli (1946–1948)</TD></TR> | <TR><TD valign="top">[1]</TD> <TD valign="top"> J.H. Lambert, "Opera Mathematica" , '''1–2''' , O. Füssli (1946–1948)</TD></TR> | ||
− | <TR><TD valign="top">[2]</TD> <TD valign="top"> G.M. Fichtenholz, "Differential und Integralrechnung" , '''2''' , Deutsch. Verlag Wissenschaft. (1964)</TD></TR> | + | <TR><TD valign="top">[2]</TD> <TD valign="top"> G.M. Fichtenholz, "Differential und Integralrechnung" , '''2''' , Deutsch. Verlag Wissenschaft. (1964) {{ZBL|0143.27002}}</TD></TR> |
<TR><TD valign="top">[3]</TD> <TD valign="top"> A.G. Postnikov, "Introduction to analytic number theory" , Moscow (1971) (In Russian)</TD></TR> | <TR><TD valign="top">[3]</TD> <TD valign="top"> A.G. Postnikov, "Introduction to analytic number theory" , Moscow (1971) (In Russian)</TD></TR> | ||
<TR><TD valign="top">[a1]</TD> <TD valign="top"> T.M. Apostol, "Modular forms and Dirichlet series in analysis" , Springer (1976)</TD></TR> | <TR><TD valign="top">[a1]</TD> <TD valign="top"> T.M. Apostol, "Modular forms and Dirichlet series in analysis" , Springer (1976)</TD></TR> |
Revision as of 07:32, 19 March 2023
The series of functions $$\sum_{n=1}^\infty a_n \frac{x^n}{1-x^n} \ . \label{1}$$ It was considered by J.H. Lambert (see [1]) in connection with questions of convergence of power series. If the series $$ \sum_{n=1}^\infty a_n $$ converges, then the Lambert series converges for all values of $x$ except $x = \pm 1$; otherwise it converges for those values of $x$ for which the series $$ \sum_{n=1}^\infty a_n x^n $$ converges. The Lambert series is used in certain problems of number theory. Thus, for $|x| < 1$ the sum $\phi(x)$ of the series (1) can be represented as a power series: $$ \sum_{n=1}^\infty A_n x^n $$ where $$ A_n = \sum_{d | n} a_d $$ and the summation is over all divisors $d$ of $n$. In particular, if $a_n = 1$, then $A_n = \tau(n)$, the number of divisors of $n$; if $a_n = n$, then $A_n = \sigma(n)$, the sum of the divisors of $n$. The behaviour of $\phi(x)$ (with suitable $a_n$) as $x \nearrow 1$ is used, for example (see [3]), in the problem of Hardy and Ramanujan on obtaining an asymptotic formula for the number of "unbounded partitions" of a natural number.
Comments
Lambert series also occur in the expansion of Eisenstein series, a particular kind of modular form. See [a1].
References
[1] | J.H. Lambert, "Opera Mathematica" , 1–2 , O. Füssli (1946–1948) |
[2] | G.M. Fichtenholz, "Differential und Integralrechnung" , 2 , Deutsch. Verlag Wissenschaft. (1964) Zbl 0143.27002 |
[3] | A.G. Postnikov, "Introduction to analytic number theory" , Moscow (1971) (In Russian) |
[a1] | T.M. Apostol, "Modular forms and Dirichlet series in analysis" , Springer (1976) |
[a2] | H. Rademacher, "Topics in analytic number theory" , Springer (1973) |
[a3] | K. Knopp, "Theorie und Anwendung der unendlichen Reihen" , Springer (1964) (English translation: Blackie, 1951 & Dover, reprint, 1990) |
Lambert series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lambert_series&oldid=52931