Difference between revisions of "Poincaré sphere"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
m (→References) |
||
Line 74: | Line 74: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1a]</TD> <TD valign="top"> | + | <table> |
+ | <TR><TD valign="top">[1a]</TD> <TD valign="top"> H. Poincaré, "Mémoire sur les courbes définies par une équation différentielle" ''J. de Math.'' , '''7''' (1881) pp. 375–422</TD></TR> | ||
+ | <TR><TD valign="top">[1b]</TD> <TD valign="top"> H. Poincaré, "Mémoire sur les courbes définies par une équation différentielle" ''J. de Math.'' , '''8''' (1882) pp. 251–296</TD></TR> | ||
+ | <TR><TD valign="top">[1c]</TD> <TD valign="top"> H. Poincaré, "Mémoire sur les courbes définies par une équation différentielle" ''J. de Math.'' , '''1''' (1885) pp. 167–244</TD></TR> | ||
+ | <TR><TD valign="top">[1d]</TD> <TD valign="top"> H. Poincaré, "Mémoire sur les courbes définies par une équation différentielle" ''J. de Math.'' , '''2''' (1886) pp. 151–217</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> A.A. Andronov, E.A. Leontovich, I.I. Gordon, A.G. Maier, "Qualitative theory of second-order dynamic systems" , Wiley (1973) (Translated from Russian)</TD></TR> | ||
+ | <TR><TD valign="top">[3]</TD> <TD valign="top"> S. Lefschetz, "Differential equations: geometric theory" , Interscience (1957)</TD></TR> | ||
+ | </table> |
Revision as of 19:16, 17 March 2023
The sphere in the space $ \mathbf R ^ {3} $
with diametrically-opposite points identified. The Poincaré sphere is diffeomorphic to the projective plane $ \mathbf R P ^ {2} $;
it was introduced by H. Poincaré (see ) to investigate the behaviour at infinity of the phase trajectories of a two-dimensional autonomous system
$$ \tag{1 } \dot{x} = P ( x , y ) ,\ \ \dot{y} = Q ( x , y ) $$
when $ P $ and $ Q $ are polynomials. The Poincaré sphere is usually depicted so that it touches the $ ( x , y ) $- plane; the projection from the centre of the Poincaré sphere gives a one-to-one mapping onto $ \mathbf R P ^ {2} $, and, moreover, a point at infinity corresponds to a pair of diametrically-opposite points on the equator. Accordingly the phase trajectories of the system (1) map onto curves on the sphere.
An equivalent method of investigating the system (1) is to apply a Poincaré transformation:
a)
$$ x = \frac{1}{z} ,\ y = \frac{u}{z} , $$
or
b)
$$ x = \frac{u}{z} ,\ y = \frac{1}{z} . $$
The first (respectively, the second) is suitable outside a sector containing the $ y $- axis ( $ x $- axis). For example, the transformation a) reduces the system (1) to the form
$$ \tag{1'} \frac{du}{d \tau } = P ^ {*} ( u , z ) ,\ \ \frac{dz}{d \tau } = Q ^ {*} ( u , z ) , $$
where $ d t = z ^ {n} d \tau $ and $ n $ is the largest of the degrees of $ P $, $ Q $; the singular points of the system (1'}) are called the singular points at infinity of the system (1). If the polynomials $ P $ and $ Q $ are coprime, then the polynomials $ P ^ {*} $ and $ Q ^ {*} $ are also coprime and the system (1) has a finite number of singular points at infinity.
References
[1a] | H. Poincaré, "Mémoire sur les courbes définies par une équation différentielle" J. de Math. , 7 (1881) pp. 375–422 |
[1b] | H. Poincaré, "Mémoire sur les courbes définies par une équation différentielle" J. de Math. , 8 (1882) pp. 251–296 |
[1c] | H. Poincaré, "Mémoire sur les courbes définies par une équation différentielle" J. de Math. , 1 (1885) pp. 167–244 |
[1d] | H. Poincaré, "Mémoire sur les courbes définies par une équation différentielle" J. de Math. , 2 (1886) pp. 151–217 |
[2] | A.A. Andronov, E.A. Leontovich, I.I. Gordon, A.G. Maier, "Qualitative theory of second-order dynamic systems" , Wiley (1973) (Translated from Russian) |
[3] | S. Lefschetz, "Differential equations: geometric theory" , Interscience (1957) |
Poincaré sphere. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Poincar%C3%A9_sphere&oldid=48209