|
|
(2 intermediate revisions by one other user not shown) |
Line 1: |
Line 1: |
− | A model defined as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b0169901.png" /> be the signature of some first-order language <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b0169902.png" /> with one kind of variables, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b0169903.png" /> is the set of symbols of functions and predicates. A Boolean-valued model then is a triple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b0169904.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b0169905.png" /> is a non-degenerate [[Boolean algebra|Boolean algebra]], <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b0169906.png" /> is a non-empty set, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b0169907.png" /> is a function defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b0169908.png" /> such that
| + | <!-- |
| + | b0169901.png |
| + | $#A+1 = 88 n = 0 |
| + | $#C+1 = 88 : ~/encyclopedia/old_files/data/B016/B.0106990 Boolean\AAhvalued model |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b0169909.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699010.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699011.png" />-place function symbol, and
| + | A model defined as follows. Let $ \Omega $ |
| + | be the signature of some first-order language $ L $ |
| + | with one kind of variables, i.e. $ \Omega $ |
| + | is the set of symbols of functions and predicates. A Boolean-valued model then is a triple $ M = (B _ {M} , V _ {M} , \Omega _ {M} ) $, |
| + | where $ B _ {M} $ |
| + | is a non-degenerate [[Boolean algebra|Boolean algebra]], $ V _ {M} $ |
| + | is a non-empty set, and $ \Omega _ {M} $ |
| + | is a function defined on $ \Omega $ |
| + | such that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699012.png" /></td> </tr></table>
| + | $$ |
| + | \Omega _ {M} ( \rho ) \in \ |
| + | V _ {M} ^ {V _ {M} ^ {n} } |
| + | $$ |
| | | |
− | if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699013.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699014.png" />-place predicate symbol. The symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699015.png" /> denotes the set of all functions defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699016.png" /> with values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699018.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699019.png" /> is a natural number. The Boolean algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699020.png" /> is called the set of truth values of the model <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699021.png" />. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699022.png" /> is called the universe of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699023.png" />. A Boolean-valued model <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699024.png" /> is also called a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699026.png" />-model if the set of truth values is the Boolean algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699028.png" />. If a Boolean algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699029.png" /> is a two-element algebra (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699030.png" />), then the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699031.png" />-model <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699032.png" /> is the classical two-valued model. | + | if $ \rho $ |
| + | is an $ n $- |
| + | place function symbol, and |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699033.png" /> be a language, complemented by new individual constants: each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699034.png" /> having its own individual constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699035.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699036.png" /> be a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699037.png" />-model and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699038.png" /> be a complete Boolean algebra; the equalities 1)–8) below then define the value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699039.png" /> of each closed expression <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699040.png" /> (i.e. of a formula or a term without free variables) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699041.png" />:
| + | $$ |
| + | \Omega _ {M} ( \rho ) \in \ |
| + | B _ {M} ^ {V _ {M} ^ {n} } |
| + | $$ |
| | | |
− | 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699042.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699043.png" />
| + | if $ \rho $ |
| + | is an $ n $- |
| + | place predicate symbol. The symbol $ X ^ {Y} $ |
| + | denotes the set of all functions defined on $ Y $ |
| + | with values in $ X $ |
| + | and $ X ^ {n} = X ^ {\{ {m } : {m<n } \} } $, |
| + | where $ n \geq 0 $ |
| + | is a natural number. The Boolean algebra $ B _ {M} $ |
| + | is called the set of truth values of the model $ M $. |
| + | The set $ V _ {M} $ |
| + | is called the universe of $ M $. |
| + | A Boolean-valued model $ M $ |
| + | is also called a $ B $- |
| + | model if the set of truth values is the Boolean algebra $ B $, |
| + | $ B _ {M} = B $. |
| + | If a Boolean algebra $ B $ |
| + | is a two-element algebra (i.e. $ B = \{ 0, 1 \} $), |
| + | then the $ B $- |
| + | model $ M $ |
| + | is the classical two-valued model. |
| | | |
− | 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699044.png" /> where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699045.png" /> are closed terms and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699046.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699047.png" />-place function or predicate symbol;
| + | Let $ L _ {M} $ |
| + | be a language, complemented by new individual constants: each $ v \in V _ {M} $ |
| + | having its own individual constant $ \mathbf v $. |
| + | Let $ M $ |
| + | be a $ B $- |
| + | model and let $ B = (B; 0, 1, C, \cup , \cap ) $ |
| + | be a complete Boolean algebra; the equalities 1)–8) below then define the value $ \| e \| _ {M} $ |
| + | of each closed expression $ e $( |
| + | i.e. of a formula or a term without free variables) of $ L _ {M} $: |
| | | |
− | 3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699048.png" />
| + | 1) $ \| \mathbf v \| _ {M} = v $, |
| + | where $ v \in V _ {M} ; $ |
| | | |
− | 4) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699049.png" />
| + | 2) $ \| \rho ( \tau _ {1} \dots t _ {n} ) \| _ {M} = ( \Omega _ {M} ( \rho )) ( \| \tau _ {1} \| _ {M} \dots \| \tau _ {n} \| _ {M} ), $ |
| + | where $ \tau _ {1} \dots \tau _ {n} $ |
| + | are closed terms and $ \rho $ |
| + | is an $ n $- |
| + | place function or predicate symbol; |
| | | |
− | 5) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699050.png" />
| + | 3) $ \| \phi \supset \psi \| _ {M} = - \| \phi \| _ {M} \cup \| \psi \| _ {M} ; $ |
| | | |
− | 6) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699051.png" />
| + | 4) $ \| \phi \lor \psi \| _ {M} = \| \phi \| _ {M} \cup \| \psi \| _ {M} ; $ |
| | | |
− | 7) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699052.png" />
| + | 5) $ \| \phi \wedge \psi \| _ {M} = \| \phi \| _ {M} \cap \| \psi \| _ {M} ; $ |
| | | |
− | 8) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699053.png" />
| + | 6) $ \| \neg \phi \| _ {M} = - \| \phi \| _ {M} ; $ |
| | | |
− | The relations 1)–8) define the value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699054.png" /> for certain non-complete Boolean algebras as well; the only condition is that the infinite unions and intersections in 7) and 8) exist. The concept of a Boolean-valued model can also be introduced for languages with more than one kind of variables. In such a case each kind of variable has its own domain of variation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699055.png" />.
| + | 7) $ \| \exists \xi \phi ( \xi ) \| _ {M} = \cup _ {v \in V _ {M} } \| \phi ( \mathbf v ) \| _ {M} ; $ |
| | | |
− | A closed formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699056.png" /> is said to be true in a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699057.png" />-model <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699058.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699059.png" />) if
| + | 8) $ \| \forall \xi \phi ( \xi ) \| _ {M} = \cap _ {v \in V _ {M} } \| \phi ( \mathbf v ) \| _ {M} . $ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699060.png" /></td> </tr></table>
| + | The relations 1)–8) define the value $ \| e \| _ {M} $ |
| + | for certain non-complete Boolean algebras as well; the only condition is that the infinite unions and intersections in 7) and 8) exist. The concept of a Boolean-valued model can also be introduced for languages with more than one kind of variables. In such a case each kind of variable has its own domain of variation $ V _ {M} $. |
| | | |
− | A <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699061.png" />-model <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699062.png" /> is said to be a model of a theory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699063.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699064.png" /> for all axioms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699065.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699066.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699067.png" /> is a homomorphism of a Boolean algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699068.png" /> into a Boolean algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699069.png" /> preserving infinite unions and intersections, then there exists a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699070.png" /> model <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699071.png" /> such that | + | A closed formula $ \phi $ |
| + | is said to be true in a $ B $- |
| + | model $ M $( |
| + | $ M \vDash \phi $) |
| + | if |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699072.png" /></td> </tr></table>
| + | $$ |
| + | \| \phi \| _ {M} = 1. |
| + | $$ |
| | | |
− | for each closed formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699073.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699074.png" />. If the universe of a model <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699075.png" /> is countable, then there exists a homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699076.png" /> into the Boolean algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699077.png" />, under which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699078.png" /> is transformed into the classical two-valued model <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699079.png" /> such that | + | A $ B $- |
| + | model $ M $ |
| + | is said to be a model of a theory $ T $ |
| + | if $ M \vDash \phi $ |
| + | for all axioms $ \phi $ |
| + | of $ T $. |
| + | If $ h $ |
| + | is a homomorphism of a Boolean algebra $ B $ |
| + | into a Boolean algebra $ B ^ { \prime } $ |
| + | preserving infinite unions and intersections, then there exists a $ B ^ { \prime } $ |
| + | model $ M ^ \prime $ |
| + | such that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699080.png" /></td> </tr></table>
| + | $$ |
| + | \| \phi \| _ {M ^ \prime } = \ |
| + | h ( \| \phi \| _ {M} ) |
| + | $$ |
| | | |
− | It has been shown that a theory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699081.png" /> is consistent if and only if it has a Boolean-valued model. This theorem forms the basis of the application of the theory of Boolean-valued models to problems of the consistency of axiomatic theories.
| + | for each closed formula $ \phi $ |
| + | of $ L _ {M} $. |
| + | If the universe of a model $ M $ |
| + | is countable, then there exists a homomorphism $ h $ |
| + | into the Boolean algebra $ \{ 0, 1 \} $, |
| + | under which $ M $ |
| + | is transformed into the classical two-valued model $ M ^ \prime $ |
| + | such that |
| | | |
− | If the Boolean-valued model of a theory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699082.png" /> is constructed by means of another axiomatic theory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699083.png" />, then one obtains the statement on the consistency of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699084.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699085.png" />. Thus, the result due to P. Cohen on the consistency of the theory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699086.png" /> relative to ZF is obtained by constructing the respective Boolean-valued model by means of the system ZF (cf. [[Forcing method|Forcing method]]). The construction of the Cohen forcing relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699087.png" /> is equivalent to that of a Boolean-valued model <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699088.png" /> such that
| + | $$ |
| + | M \vDash \phi \rightarrow M ^ \prime \vDash \phi . |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699089.png" /></td> </tr></table>
| + | It has been shown that a theory $ T $ |
| + | is consistent if and only if it has a Boolean-valued model. This theorem forms the basis of the application of the theory of Boolean-valued models to problems of the consistency of axiomatic theories. |
| | | |
− | ====References====
| + | If the Boolean-valued model of a theory $ T $ |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Rasiowa, R. Sikorski, "The mathematics of metamathematics" , Polska Akad. Nauk (1963)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> T.J. Jech, "Lectures in set theory: with particular emphasis on the method of forcing" , ''Lect. notes in math.'' , '''217''' , Springer (1971)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G. Takeuti, W.M. Zaring, "Axiomatic set theory" , Springer (1973)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> Yu.I. Manin, "The problem of the continuum" ''J. Soviet Math.'' , '''5''' : 4 (1976) pp. 451–502 ''Itogi Nauk. i Tekhn. Sovrem. Problemy'' , '''5''' (1975) pp. 5–73</TD></TR></table>
| + | is constructed by means of another axiomatic theory $ S $, |
− | | + | then one obtains the statement on the consistency of $ T $ |
− | | + | relative to $ S $. |
− | | + | Thus, the result due to P. Cohen on the consistency of the theory $ \mathop{\rm ZF} + (2 ^ {\aleph _ {0} } > \aleph _ {1)} $ |
− | ====Comments====
| + | relative to ZF is obtained by constructing the respective Boolean-valued model by means of the system ZF (cf. [[Forcing method|Forcing method]]). The construction of the Cohen forcing relation $ p \Vdash \phi $ |
| + | is equivalent to that of a Boolean-valued model $ M $ |
| + | such that |
| | | |
| + | $$ |
| + | \| \phi \| _ {M} = \{ {p } : {p \Vdash \neg \neg \phi } \} |
| + | . |
| + | $$ |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.L. Bell, "Boolean-valued models and independence proofs in set theory" , Clarendon Press (1977)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> T.J. Jech, "Set theory" , Acad. Press (1978) (Translated from German)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> K. Kunen, "Set theory" , North-Holland (1980)</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[1]</TD> <TD valign="top"> E. Rasiowa, R. Sikorski, "The mathematics of metamathematics" , Polska Akad. Nauk (1963)</TD></TR> |
| + | <TR><TD valign="top">[2]</TD> <TD valign="top"> T.J. Jech, "Lectures in set theory: with particular emphasis on the method of forcing" , ''Lect. notes in math.'' , '''217''' , Springer (1971)</TD></TR> |
| + | <TR><TD valign="top">[3]</TD> <TD valign="top"> G. Takeuti, W.M. Zaring, "Axiomatic set theory" , Springer (1973)</TD></TR> |
| + | <TR><TD valign="top">[4]</TD> <TD valign="top"> Yu.I. Manin, "The problem of the continuum" ''J. Soviet Math.'' , '''5''' : 4 (1976) pp. 451–502 ''Itogi Nauk. i Tekhn. Sovrem. Problemy'' , '''5''' (1975) pp. 5–73 {{ZBL|0375.02055}}</TD></TR> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> J.L. Bell, "Boolean-valued models and independence proofs in set theory" , Clarendon Press (1977)</TD></TR> |
| + | <TR><TD valign="top">[a2]</TD> <TD valign="top"> T.J. Jech, "Set theory" , Acad. Press (1978) (Translated from German)</TD></TR> |
| + | <TR><TD valign="top">[a3]</TD> <TD valign="top"> K. Kunen, "Set theory" , North-Holland (1980)</TD></TR> |
| + | </table> |
A model defined as follows. Let $ \Omega $
be the signature of some first-order language $ L $
with one kind of variables, i.e. $ \Omega $
is the set of symbols of functions and predicates. A Boolean-valued model then is a triple $ M = (B _ {M} , V _ {M} , \Omega _ {M} ) $,
where $ B _ {M} $
is a non-degenerate Boolean algebra, $ V _ {M} $
is a non-empty set, and $ \Omega _ {M} $
is a function defined on $ \Omega $
such that
$$
\Omega _ {M} ( \rho ) \in \
V _ {M} ^ {V _ {M} ^ {n} }
$$
if $ \rho $
is an $ n $-
place function symbol, and
$$
\Omega _ {M} ( \rho ) \in \
B _ {M} ^ {V _ {M} ^ {n} }
$$
if $ \rho $
is an $ n $-
place predicate symbol. The symbol $ X ^ {Y} $
denotes the set of all functions defined on $ Y $
with values in $ X $
and $ X ^ {n} = X ^ {\{ {m } : {m<n } \} } $,
where $ n \geq 0 $
is a natural number. The Boolean algebra $ B _ {M} $
is called the set of truth values of the model $ M $.
The set $ V _ {M} $
is called the universe of $ M $.
A Boolean-valued model $ M $
is also called a $ B $-
model if the set of truth values is the Boolean algebra $ B $,
$ B _ {M} = B $.
If a Boolean algebra $ B $
is a two-element algebra (i.e. $ B = \{ 0, 1 \} $),
then the $ B $-
model $ M $
is the classical two-valued model.
Let $ L _ {M} $
be a language, complemented by new individual constants: each $ v \in V _ {M} $
having its own individual constant $ \mathbf v $.
Let $ M $
be a $ B $-
model and let $ B = (B; 0, 1, C, \cup , \cap ) $
be a complete Boolean algebra; the equalities 1)–8) below then define the value $ \| e \| _ {M} $
of each closed expression $ e $(
i.e. of a formula or a term without free variables) of $ L _ {M} $:
1) $ \| \mathbf v \| _ {M} = v $,
where $ v \in V _ {M} ; $
2) $ \| \rho ( \tau _ {1} \dots t _ {n} ) \| _ {M} = ( \Omega _ {M} ( \rho )) ( \| \tau _ {1} \| _ {M} \dots \| \tau _ {n} \| _ {M} ), $
where $ \tau _ {1} \dots \tau _ {n} $
are closed terms and $ \rho $
is an $ n $-
place function or predicate symbol;
3) $ \| \phi \supset \psi \| _ {M} = - \| \phi \| _ {M} \cup \| \psi \| _ {M} ; $
4) $ \| \phi \lor \psi \| _ {M} = \| \phi \| _ {M} \cup \| \psi \| _ {M} ; $
5) $ \| \phi \wedge \psi \| _ {M} = \| \phi \| _ {M} \cap \| \psi \| _ {M} ; $
6) $ \| \neg \phi \| _ {M} = - \| \phi \| _ {M} ; $
7) $ \| \exists \xi \phi ( \xi ) \| _ {M} = \cup _ {v \in V _ {M} } \| \phi ( \mathbf v ) \| _ {M} ; $
8) $ \| \forall \xi \phi ( \xi ) \| _ {M} = \cap _ {v \in V _ {M} } \| \phi ( \mathbf v ) \| _ {M} . $
The relations 1)–8) define the value $ \| e \| _ {M} $
for certain non-complete Boolean algebras as well; the only condition is that the infinite unions and intersections in 7) and 8) exist. The concept of a Boolean-valued model can also be introduced for languages with more than one kind of variables. In such a case each kind of variable has its own domain of variation $ V _ {M} $.
A closed formula $ \phi $
is said to be true in a $ B $-
model $ M $(
$ M \vDash \phi $)
if
$$
\| \phi \| _ {M} = 1.
$$
A $ B $-
model $ M $
is said to be a model of a theory $ T $
if $ M \vDash \phi $
for all axioms $ \phi $
of $ T $.
If $ h $
is a homomorphism of a Boolean algebra $ B $
into a Boolean algebra $ B ^ { \prime } $
preserving infinite unions and intersections, then there exists a $ B ^ { \prime } $
model $ M ^ \prime $
such that
$$
\| \phi \| _ {M ^ \prime } = \
h ( \| \phi \| _ {M} )
$$
for each closed formula $ \phi $
of $ L _ {M} $.
If the universe of a model $ M $
is countable, then there exists a homomorphism $ h $
into the Boolean algebra $ \{ 0, 1 \} $,
under which $ M $
is transformed into the classical two-valued model $ M ^ \prime $
such that
$$
M \vDash \phi \rightarrow M ^ \prime \vDash \phi .
$$
It has been shown that a theory $ T $
is consistent if and only if it has a Boolean-valued model. This theorem forms the basis of the application of the theory of Boolean-valued models to problems of the consistency of axiomatic theories.
If the Boolean-valued model of a theory $ T $
is constructed by means of another axiomatic theory $ S $,
then one obtains the statement on the consistency of $ T $
relative to $ S $.
Thus, the result due to P. Cohen on the consistency of the theory $ \mathop{\rm ZF} + (2 ^ {\aleph _ {0} } > \aleph _ {1)} $
relative to ZF is obtained by constructing the respective Boolean-valued model by means of the system ZF (cf. Forcing method). The construction of the Cohen forcing relation $ p \Vdash \phi $
is equivalent to that of a Boolean-valued model $ M $
such that
$$
\| \phi \| _ {M} = \{ {p } : {p \Vdash \neg \neg \phi } \}
.
$$
References
[1] | E. Rasiowa, R. Sikorski, "The mathematics of metamathematics" , Polska Akad. Nauk (1963) |
[2] | T.J. Jech, "Lectures in set theory: with particular emphasis on the method of forcing" , Lect. notes in math. , 217 , Springer (1971) |
[3] | G. Takeuti, W.M. Zaring, "Axiomatic set theory" , Springer (1973) |
[4] | Yu.I. Manin, "The problem of the continuum" J. Soviet Math. , 5 : 4 (1976) pp. 451–502 Itogi Nauk. i Tekhn. Sovrem. Problemy , 5 (1975) pp. 5–73 Zbl 0375.02055 |
[a1] | J.L. Bell, "Boolean-valued models and independence proofs in set theory" , Clarendon Press (1977) |
[a2] | T.J. Jech, "Set theory" , Acad. Press (1978) (Translated from German) |
[a3] | K. Kunen, "Set theory" , North-Holland (1980) |