Difference between revisions of "Latin square"
(Importing text file) |
(→References: + ZBL link) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | l0576201.png | ||
+ | $#A+1 = 110 n = 0 | ||
+ | $#C+1 = 110 : ~/encyclopedia/old_files/data/L057/L.0507620 Latin square | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
+ | |||
+ | A square matrix of order $ n $ | ||
+ | in which each row and each column are permutations of the elements of a finite set $ S $ | ||
+ | consisting of $ n $ | ||
+ | elements. The Latin square is said to be constructed on the set $ S $; | ||
+ | usually $ S = \{ 1 \dots n \} $. | ||
+ | A Latin square exists for any $ n $; | ||
+ | for example, $ A = \| a _ {ij} \| $, | ||
+ | where | ||
+ | |||
+ | $$ | ||
+ | a _ {ij} \equiv i + j - 1 ( \mathop{\rm mod} n ) ,\ \ | ||
+ | i , j = 1 \dots n , | ||
+ | $$ | ||
is a Latin square. | is a Latin square. | ||
− | Every Latin square can be regarded as the multiplication table of a [[Quasi-group|quasi-group]]; the converse is also true: the multiplication table of a finite quasi-group is a Latin square. For a Latin square | + | Every Latin square can be regarded as the multiplication table of a [[Quasi-group|quasi-group]]; the converse is also true: the multiplication table of a finite quasi-group is a Latin square. For a Latin square $ A = \| a _ {ij} \| $ |
+ | to be the [[Cayley table|Cayley table]] of a group it is necessary and sufficient that the following condition (the square criterion) is satisfied: If $ a _ {ik} = a _ {i _ {1} k _ {1} } $, | ||
+ | $ a _ {il} = a _ {i _ {1} l _ {1} } $, | ||
+ | $ a _ {jk} = a _ {j _ {1} k _ {1} } , $ | ||
+ | then $ a _ {jl} = a _ {j _ {1} l _ {1} } $. | ||
− | From two Latin squares, | + | From two Latin squares, $ A = \| a _ {kl} \| $ |
+ | of order $ n $ | ||
+ | and $ B = \| b _ {rs} \| $ | ||
+ | of order $ m $, | ||
+ | one can always construct a Latin square $ C = \| c _ {ij} \| $ | ||
+ | of order $ mn $, | ||
+ | for example as follows: | ||
− | + | $$ | |
+ | c _ {ij} = b _ {rs} + ( a _ {kl} - 1 ) m ,\ \ | ||
+ | i = r + m ( k - 1 ) ,\ \ | ||
+ | j = s + m ( l - 1 ) . | ||
+ | $$ | ||
− | For the number | + | For the number $ L _ {n} $ |
+ | of Latin squares of order $ n $ | ||
+ | one has the following lower bound: | ||
− | + | $$ | |
+ | L _ {n} \geq n ! ( n - 1 ) ! \dots 1 ! . | ||
+ | $$ | ||
− | A Latin square is said to be reduced (or a Latin square of standard form) if the elements of its first row and first column are in the natural order. For the number | + | A Latin square is said to be reduced (or a Latin square of standard form) if the elements of its first row and first column are in the natural order. For the number $ l _ {n} $ |
+ | of reduced Latin squares of order $ n $ | ||
+ | one has | ||
− | + | $$ | |
+ | L _ {n} = n ! ( n - 1 ) ! l _ {n} ,\ \ | ||
+ | l _ {n} \geq m _ {n} = ( n - 2 ) ! ( n - 3 ) ! \dots 1 ! | ||
+ | $$ | ||
− | Two Latin squares constructed on the same set | + | Two Latin squares constructed on the same set $ S $ |
+ | are said to be equivalent or isotopic if one of them can be obtained from the other by a permutation of rows and columns and renaming of elements. Let $ k _ {n} $ | ||
+ | be the number of equivalence classes of Latin squares of order $ n $. | ||
+ | The following first few values of $ l _ {n} $ | ||
+ | and $ k _ {n} $ | ||
+ | are known:<table border="0" cellpadding="0" cellspacing="0" style="background-color:black;"> <tr><td> <table border="0" cellspacing="1" cellpadding="4" style="background-color:black;"> <tbody> <tr> <td colname="1" style="background-color:white;" colspan="1"> $ n $ | ||
+ | </td> <td colname="2" style="background-color:white;" colspan="1">3</td> <td colname="3" style="background-color:white;" colspan="1">4</td> <td colname="4" style="background-color:white;" colspan="1">5</td> <td colname="5" style="background-color:white;" colspan="1">6</td> <td colname="6" style="background-color:white;" colspan="1">7</td> <td colname="7" style="background-color:white;" colspan="1">8</td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $ k _ {n} $ | ||
+ | </td> <td colname="2" style="background-color:white;" colspan="1">1</td> <td colname="3" style="background-color:white;" colspan="1">2</td> <td colname="4" style="background-color:white;" colspan="1">2</td> <td colname="5" style="background-color:white;" colspan="1">22</td> <td colname="6" style="background-color:white;" colspan="1">563</td> <td colname="7" style="background-color:white;" colspan="1">1 676 257</td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $ l _ {n} $ | ||
+ | </td> <td colname="2" style="background-color:white;" colspan="1">1</td> <td colname="3" style="background-color:white;" colspan="1">4</td> <td colname="4" style="background-color:white;" colspan="1">56</td> <td colname="5" style="background-color:white;" colspan="1">9408</td> <td colname="6" style="background-color:white;" colspan="1">16 942 080</td> <td colname="7" style="background-color:white;" colspan="1">535 281 401 856</td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $ m _ {n} $ | ||
+ | </td> <td colname="2" style="background-color:white;" colspan="1">1</td> <td colname="3" style="background-color:white;" colspan="1">2</td> <td colname="4" style="background-color:white;" colspan="1">12</td> <td colname="5" style="background-color:white;" colspan="1">288</td> <td colname="6" style="background-color:white;" colspan="1">34 560</td> <td colname="7" style="background-color:white;" colspan="1">24 883 200</td> </tr> </tbody> </table> | ||
</td></tr> </table> | </td></tr> </table> | ||
− | Also, | + | Also, $ l _ {9} = 377 597 570 964 258 816 $. |
+ | The problem of obtaining bounds for $ l _ {n} $ | ||
+ | remains unsolved (1982). | ||
− | In the theory of design of experiments it is required to construct Latin squares with various restrictions on the position of elements in them. A Latin square on | + | In the theory of design of experiments it is required to construct Latin squares with various restrictions on the position of elements in them. A Latin square on $ \{ 1 \dots n \} $ |
+ | is said to be complete if for any natural numbers $ \alpha $, | ||
+ | $ \beta $, | ||
+ | $ \alpha \neq \beta $, | ||
+ | $ 1 \leq \alpha , \beta \leq n $, | ||
+ | there are numbers $ i $, | ||
+ | $ j $, | ||
+ | $ k $, | ||
+ | $ l $ | ||
+ | such that | ||
− | + | $$ | |
+ | ( a _ {ij} , a _ {i,j+} 1 ) = \ | ||
+ | ( \alpha , \beta ) \ \textrm{ and } \ \ | ||
+ | ( a _ {kl} , a _ {k+} 1,l ) = ( \alpha , \beta ) , | ||
+ | $$ | ||
− | Algorithms for constructing complete Latin squares are known only for even | + | Algorithms for constructing complete Latin squares are known only for even $ n $; |
+ | there are examples of complete squares for certain odd $ n $. | ||
− | A Latin subsquare of a given Latin square of order | + | A Latin subsquare of a given Latin square of order $ n $ |
+ | is a submatrix of it such that it is itself a Latin square of order $ k $, | ||
+ | $ k < n $. | ||
+ | Any Latin square of order $ k $ | ||
+ | can be a Latin subsquare of a Latin square of order $ n $ | ||
+ | if $ n \geq 2 k $. | ||
− | In the construction of [[Orthogonal Latin squares|orthogonal Latin squares]] an important role is played by the concept of a transversal of a Latin square. A partial transversal of length | + | In the construction of [[Orthogonal Latin squares|orthogonal Latin squares]] an important role is played by the concept of a transversal of a Latin square. A partial transversal of length $ t $ |
+ | of a Latin square $ A = \| a _ {ij} \| $ | ||
+ | is a set $ T $ | ||
+ | consisting of $ t $ | ||
+ | cells of the Latin square, | ||
− | + | $$ | |
+ | T = \{ ( i _ {1} , j _ {1} ) \dots ( i _ {t} , j _ {t} ) \} , | ||
+ | $$ | ||
− | such that | + | such that $ i _ {k} \neq i _ {l} $, |
+ | $ j _ {k} \neq j _ {l} $, | ||
+ | $ a _ {i _ {k} j _ {k} } \neq a _ {i _ {l} j _ {l} } $ | ||
+ | for $ k \neq l $, | ||
+ | $ 1 \leq k , l \leq t $. | ||
+ | One always has $ t \leq n $; | ||
+ | if $ t = n $, | ||
+ | a partial transversal is called a transversal. The existence in a Latin square of order $ n $ | ||
+ | of a set of $ n $ | ||
+ | disjoint transversals is a necessary and sufficient condition for the existence of an orthogonal mate, i.e. a Latin square on the same symbols orthogonal to the given one. The Latin square of order 6, | ||
− | + | $$ | |
+ | |||
+ | \begin{array}{c} | ||
+ | 012 345 \\ | ||
+ | 120 453 \\ | ||
+ | 201 534 \\ | ||
+ | 345 012 \\ | ||
+ | 451 320 \\ | ||
+ | 534 201 \\ | ||
+ | \end{array} | ||
+ | |||
+ | $$ | ||
does not have a transversal. | does not have a transversal. | ||
− | In any Latin square of order | + | In any Latin square of order $ n \geq 7 $ |
+ | there is at least one partial transversal of length $ t \geq ( 2 n + 1 ) / 3 $. | ||
+ | For $ n \geq 4 $ | ||
+ | one can always construct a Latin square such that both its main diagonals are transversals. | ||
==Some generalizations of Latin squares.== | ==Some generalizations of Latin squares.== | ||
− | A partial, or incomplete, Latin square of order | + | A partial, or incomplete, Latin square of order $ n $ |
+ | is a matrix of order $ n $ | ||
+ | in which part of the cells are filled by the elements of a set $ S $ | ||
+ | of cardinality $ n $, | ||
+ | but such that in every row and every column the elements of $ S $ | ||
+ | occur at most once. There are partial Latin squares that cannot be completed to a Latin square, for example, | ||
− | + | $$ | |
− | An incomplete Latin square containing exactly | + | \begin{array}{cccc} |
+ | 1 & . & . & . \\ | ||
+ | . & 2 & 3 & 4 \\ | ||
+ | . & . & . & . \\ | ||
+ | . & . & . & . \\ | ||
+ | \end{array} | ||
+ | |||
+ | $$ | ||
+ | |||
+ | An incomplete Latin square containing exactly $ n - 1 $ | ||
+ | elements can be completed to a Latin square. It is known that when $ n > 4 $ | ||
+ | the Cayley tables of two different groups of order $ n $ | ||
+ | differ from each other in at least $ 2 n $ | ||
+ | places. | ||
An infinite Latin square is an infinite matrix whose elements are natural numbers that occur in each row and each column exactly once. | An infinite Latin square is an infinite matrix whose elements are natural numbers that occur in each row and each column exactly once. | ||
− | There are a few generalizations of the concept of a Latin square to the multi-dimensional case. Thus, an | + | There are a few generalizations of the concept of a Latin square to the multi-dimensional case. Thus, an $ m $- |
+ | dimensional permutation cube of order $ n $ | ||
+ | is an $ m $- | ||
+ | dimensional matrix | ||
− | + | $$ | |
+ | A = \| a _ {i _ {1} \dots i _ {m} } \| | ||
+ | $$ | ||
− | of order | + | of order $ n $ |
+ | whose elements are the first $ n $ | ||
+ | natural numbers and which is such that for any $ k $ | ||
+ | the set | ||
− | + | $$ | |
+ | a _ {i _ {1} \dots i _ {k-} 1 1i _ {k+} 1 \dots i _ {m} } ,\ | ||
+ | a _ {i _ {1} \dots i _ {k-} 1 2i _ {k+} 1 \dots i _ {m} } \dots | ||
+ | $$ | ||
− | + | $$ | |
+ | a _ {i _ {1} \dots i _ {k-} 1 ni _ {k+} 1 \dots i _ {m} } | ||
+ | $$ | ||
− | is a permutation of the first | + | is a permutation of the first $ n $ |
+ | natural numbers. An $ m $- | ||
+ | dimensional hypercube of order $ n $ | ||
+ | and class $ r $ | ||
+ | is an $ m $- | ||
+ | dimensional matrix of order $ n $ | ||
+ | with elements belonging to a set of $ n ^ {r} $ | ||
+ | elements, each of which occurs $ n ^ {m-} r $ | ||
+ | times in the matrix, and in every $ ( n - 1 ) $- | ||
+ | dimensional section of the matrix (that is, among the elements | ||
− | + | $$ | |
+ | a _ {i _ {1} \dots i _ {k-} 1 i _ {k} ^ {0} i _ {k+} 1 \dots i _ {m} } , | ||
+ | $$ | ||
− | where | + | where $ i _ {k} ^ {0} = \textrm{ const } $ |
+ | and the remaining indices run through all the $ n $ | ||
+ | values) it occurs $ n ^ {m-} r- 1 $ | ||
+ | times. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> V.N. Sachkov, "Combinatorial methods in discrete mathematics" , Moscow (1977) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J. Dênes, "Latin squares and their applications" , Acad. Press (1974)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M. Hall, "Combinatorial theory" , Blaisdell (1967)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> H.J. Ryser, "Combinatorial mathematics" , ''Carus Math. Monogr.'' , '''14''' , Math. Assoc. Amer. (1963)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> V.N. Sachkov, "Combinatorial methods in discrete mathematics" , Moscow (1977) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J. Dênes, "Latin squares and their applications" , Acad. Press (1974)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M. Hall, "Combinatorial theory" , Blaisdell (1967)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> H.J. Ryser, "Combinatorial mathematics" , ''Carus Math. Monogr.'' , '''14''' , Math. Assoc. Amer. (1963)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
The truth of the van der Waerden permanent conjecture (cf. [[Permanent|Permanent]]) implies that | The truth of the van der Waerden permanent conjecture (cf. [[Permanent|Permanent]]) implies that | ||
− | + | $$ | |
+ | L _ {n} \geq \ | ||
+ | |||
+ | \frac{( n!) ^ {2n} }{n ^ {n ^ {2} } } | ||
+ | , | ||
+ | $$ | ||
cf. [[#References|[a1]]]. | cf. [[#References|[a1]]]. | ||
− | P.W. Shor (cf. [[#References|[a2]]]) obtained the lower bound | + | P.W. Shor (cf. [[#References|[a2]]]) obtained the lower bound $ t \geq n - c ( \mathop{\rm log} n) ^ {2} $ |
+ | for the length $ t $ | ||
+ | of a partial transversal in a Latin square (of order $ n > 7 $). | ||
− | The assertion that an incomplete Latin square containing exactly | + | The assertion that an incomplete Latin square containing exactly $ n - 1 $ |
+ | elements may be completed to a Latin square is known as the Evans conjecture. It was proved by B. Smetaniuk [[#References|[a3]]]. | ||
For a recent survey on Latin squares see [[#References|[a4]]]. | For a recent survey on Latin squares see [[#References|[a4]]]. | ||
Line 91: | Line 246: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R.M. Wilson, "Nonisomorphic Steiner triple systems" ''Math. Z.'' , '''135''' (1974) pp. 303–313</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P.W. Shor, "A lower bound for the length of a partial transversal in a Latin square" ''J. Comb. Theory (A)'' , '''33''' (1982) pp. 1–8</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> B. Smetaniuk, "A new construction of Latin squares I: A proof of the Evans conjecture" ''Ars. Comb.'' , '''11''' (1981) pp. 155–172</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> D. Jungnickel, "Lateinische Quadrate, ihre Geometrien und ihre Gruppen" ''Jahresber. Deutsch. Math. Verein.'' , '''86''' (1984) pp. 69–108</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> A. Penfold Street, D.J. Street, "Combinatorics of experimental design" , Clarendon Press (1987)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> R.M. Wilson, "Nonisomorphic Steiner triple systems" ''Math. Z.'' , '''135''' (1974) pp. 303–313</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> P.W. Shor, "A lower bound for the length of a partial transversal in a Latin square" ''J. Comb. Theory (A)'' , '''33''' (1982) pp. 1–8</TD></TR> | ||
+ | <TR><TD valign="top">[a3]</TD> <TD valign="top"> B. Smetaniuk, "A new construction of Latin squares I: A proof of the Evans conjecture" ''Ars. Comb.'' , '''11''' (1981) pp. 155–172</TD></TR> | ||
+ | <TR><TD valign="top">[a4]</TD> <TD valign="top"> D. Jungnickel, "Lateinische Quadrate, ihre Geometrien und ihre Gruppen" ''Jahresber. Deutsch. Math. Verein.'' , '''86''' (1984) pp. 69–108</TD></TR> | ||
+ | <TR><TD valign="top">[a5]</TD> <TD valign="top"> A. Penfold Street, D.J. Street, "Combinatorics of experimental design" , Clarendon Press (1987) {{ZBL|0622.05001}}</TD></TR> | ||
+ | </table> |
Latest revision as of 11:23, 17 March 2023
A square matrix of order $ n $
in which each row and each column are permutations of the elements of a finite set $ S $
consisting of $ n $
elements. The Latin square is said to be constructed on the set $ S $;
usually $ S = \{ 1 \dots n \} $.
A Latin square exists for any $ n $;
for example, $ A = \| a _ {ij} \| $,
where
$$ a _ {ij} \equiv i + j - 1 ( \mathop{\rm mod} n ) ,\ \ i , j = 1 \dots n , $$
is a Latin square.
Every Latin square can be regarded as the multiplication table of a quasi-group; the converse is also true: the multiplication table of a finite quasi-group is a Latin square. For a Latin square $ A = \| a _ {ij} \| $ to be the Cayley table of a group it is necessary and sufficient that the following condition (the square criterion) is satisfied: If $ a _ {ik} = a _ {i _ {1} k _ {1} } $, $ a _ {il} = a _ {i _ {1} l _ {1} } $, $ a _ {jk} = a _ {j _ {1} k _ {1} } , $ then $ a _ {jl} = a _ {j _ {1} l _ {1} } $.
From two Latin squares, $ A = \| a _ {kl} \| $ of order $ n $ and $ B = \| b _ {rs} \| $ of order $ m $, one can always construct a Latin square $ C = \| c _ {ij} \| $ of order $ mn $, for example as follows:
$$ c _ {ij} = b _ {rs} + ( a _ {kl} - 1 ) m ,\ \ i = r + m ( k - 1 ) ,\ \ j = s + m ( l - 1 ) . $$
For the number $ L _ {n} $ of Latin squares of order $ n $ one has the following lower bound:
$$ L _ {n} \geq n ! ( n - 1 ) ! \dots 1 ! . $$
A Latin square is said to be reduced (or a Latin square of standard form) if the elements of its first row and first column are in the natural order. For the number $ l _ {n} $ of reduced Latin squares of order $ n $ one has
$$ L _ {n} = n ! ( n - 1 ) ! l _ {n} ,\ \ l _ {n} \geq m _ {n} = ( n - 2 ) ! ( n - 3 ) ! \dots 1 ! $$
Two Latin squares constructed on the same set $ S $ are said to be equivalent or isotopic if one of them can be obtained from the other by a permutation of rows and columns and renaming of elements. Let $ k _ {n} $ be the number of equivalence classes of Latin squares of order $ n $. The following first few values of $ l _ {n} $ and $ k _ {n} $
are known:
<tbody> </tbody>
|
Also, $ l _ {9} = 377 597 570 964 258 816 $. The problem of obtaining bounds for $ l _ {n} $ remains unsolved (1982).
In the theory of design of experiments it is required to construct Latin squares with various restrictions on the position of elements in them. A Latin square on $ \{ 1 \dots n \} $ is said to be complete if for any natural numbers $ \alpha $, $ \beta $, $ \alpha \neq \beta $, $ 1 \leq \alpha , \beta \leq n $, there are numbers $ i $, $ j $, $ k $, $ l $ such that
$$ ( a _ {ij} , a _ {i,j+} 1 ) = \ ( \alpha , \beta ) \ \textrm{ and } \ \ ( a _ {kl} , a _ {k+} 1,l ) = ( \alpha , \beta ) , $$
Algorithms for constructing complete Latin squares are known only for even $ n $; there are examples of complete squares for certain odd $ n $.
A Latin subsquare of a given Latin square of order $ n $ is a submatrix of it such that it is itself a Latin square of order $ k $, $ k < n $. Any Latin square of order $ k $ can be a Latin subsquare of a Latin square of order $ n $ if $ n \geq 2 k $.
In the construction of orthogonal Latin squares an important role is played by the concept of a transversal of a Latin square. A partial transversal of length $ t $ of a Latin square $ A = \| a _ {ij} \| $ is a set $ T $ consisting of $ t $ cells of the Latin square,
$$ T = \{ ( i _ {1} , j _ {1} ) \dots ( i _ {t} , j _ {t} ) \} , $$
such that $ i _ {k} \neq i _ {l} $, $ j _ {k} \neq j _ {l} $, $ a _ {i _ {k} j _ {k} } \neq a _ {i _ {l} j _ {l} } $ for $ k \neq l $, $ 1 \leq k , l \leq t $. One always has $ t \leq n $; if $ t = n $, a partial transversal is called a transversal. The existence in a Latin square of order $ n $ of a set of $ n $ disjoint transversals is a necessary and sufficient condition for the existence of an orthogonal mate, i.e. a Latin square on the same symbols orthogonal to the given one. The Latin square of order 6,
$$ \begin{array}{c} 012 345 \\ 120 453 \\ 201 534 \\ 345 012 \\ 451 320 \\ 534 201 \\ \end{array} $$
does not have a transversal.
In any Latin square of order $ n \geq 7 $ there is at least one partial transversal of length $ t \geq ( 2 n + 1 ) / 3 $. For $ n \geq 4 $ one can always construct a Latin square such that both its main diagonals are transversals.
Some generalizations of Latin squares.
A partial, or incomplete, Latin square of order $ n $ is a matrix of order $ n $ in which part of the cells are filled by the elements of a set $ S $ of cardinality $ n $, but such that in every row and every column the elements of $ S $ occur at most once. There are partial Latin squares that cannot be completed to a Latin square, for example,
$$ \begin{array}{cccc} 1 & . & . & . \\ . & 2 & 3 & 4 \\ . & . & . & . \\ . & . & . & . \\ \end{array} $$
An incomplete Latin square containing exactly $ n - 1 $ elements can be completed to a Latin square. It is known that when $ n > 4 $ the Cayley tables of two different groups of order $ n $ differ from each other in at least $ 2 n $ places.
An infinite Latin square is an infinite matrix whose elements are natural numbers that occur in each row and each column exactly once.
There are a few generalizations of the concept of a Latin square to the multi-dimensional case. Thus, an $ m $- dimensional permutation cube of order $ n $ is an $ m $- dimensional matrix
$$ A = \| a _ {i _ {1} \dots i _ {m} } \| $$
of order $ n $ whose elements are the first $ n $ natural numbers and which is such that for any $ k $ the set
$$ a _ {i _ {1} \dots i _ {k-} 1 1i _ {k+} 1 \dots i _ {m} } ,\ a _ {i _ {1} \dots i _ {k-} 1 2i _ {k+} 1 \dots i _ {m} } \dots $$
$$ a _ {i _ {1} \dots i _ {k-} 1 ni _ {k+} 1 \dots i _ {m} } $$
is a permutation of the first $ n $ natural numbers. An $ m $- dimensional hypercube of order $ n $ and class $ r $ is an $ m $- dimensional matrix of order $ n $ with elements belonging to a set of $ n ^ {r} $ elements, each of which occurs $ n ^ {m-} r $ times in the matrix, and in every $ ( n - 1 ) $- dimensional section of the matrix (that is, among the elements
$$ a _ {i _ {1} \dots i _ {k-} 1 i _ {k} ^ {0} i _ {k+} 1 \dots i _ {m} } , $$
where $ i _ {k} ^ {0} = \textrm{ const } $ and the remaining indices run through all the $ n $ values) it occurs $ n ^ {m-} r- 1 $ times.
References
[1] | V.N. Sachkov, "Combinatorial methods in discrete mathematics" , Moscow (1977) (In Russian) |
[2] | J. Dênes, "Latin squares and their applications" , Acad. Press (1974) |
[3] | M. Hall, "Combinatorial theory" , Blaisdell (1967) |
[4] | H.J. Ryser, "Combinatorial mathematics" , Carus Math. Monogr. , 14 , Math. Assoc. Amer. (1963) |
Comments
The truth of the van der Waerden permanent conjecture (cf. Permanent) implies that
$$ L _ {n} \geq \ \frac{( n!) ^ {2n} }{n ^ {n ^ {2} } } , $$
cf. [a1].
P.W. Shor (cf. [a2]) obtained the lower bound $ t \geq n - c ( \mathop{\rm log} n) ^ {2} $ for the length $ t $ of a partial transversal in a Latin square (of order $ n > 7 $).
The assertion that an incomplete Latin square containing exactly $ n - 1 $ elements may be completed to a Latin square is known as the Evans conjecture. It was proved by B. Smetaniuk [a3].
For a recent survey on Latin squares see [a4].
For a discussion of the role of Latin squares and sets of mutually orthogonal Latin squares in the design of experiments cf. [a5].
References
[a1] | R.M. Wilson, "Nonisomorphic Steiner triple systems" Math. Z. , 135 (1974) pp. 303–313 |
[a2] | P.W. Shor, "A lower bound for the length of a partial transversal in a Latin square" J. Comb. Theory (A) , 33 (1982) pp. 1–8 |
[a3] | B. Smetaniuk, "A new construction of Latin squares I: A proof of the Evans conjecture" Ars. Comb. , 11 (1981) pp. 155–172 |
[a4] | D. Jungnickel, "Lateinische Quadrate, ihre Geometrien und ihre Gruppen" Jahresber. Deutsch. Math. Verein. , 86 (1984) pp. 69–108 |
[a5] | A. Penfold Street, D.J. Street, "Combinatorics of experimental design" , Clarendon Press (1987) Zbl 0622.05001 |
Latin square. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Latin_square&oldid=15140