Namespaces
Variants
Actions

Difference between revisions of "Catalan surface"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (+ ZBL ref)
Line 5: Line 5:
  
 
* {{Ref|1}} E. Catalan, "Mémoire sur les surfaces gauches à plan directeur" , Paris  (1843)
 
* {{Ref|1}} E. Catalan, "Mémoire sur les surfaces gauches à plan directeur" , Paris  (1843)
* {{Ref|a1}} W. Klingenberg, "A course in differential geometry" , Springer  (1978)  (Translated from German) Klingenberg
+
* {{Ref|a1}} W. Klingenberg, "A course in differential geometry" , Springer  (1978)  (Translated from German) {{ZBL|0366.53001}}
 
* {{Ref|a2}} R.S. Millman, G.D. Parker,  "Elements of differential geometry" , Prentice-Hall  (1977)  pp. 31–35
 
* {{Ref|a2}} R.S. Millman, G.D. Parker,  "Elements of differential geometry" , Prentice-Hall  (1977)  pp. 31–35

Revision as of 10:46, 16 March 2023

A ruled surface whose rectilinear generators are all parallel to the same plane. Its line of restriction (cf. Ruled surface) is planar. The position vector of a Catalan surface is $r=\rho(u)+vl(u)$, where $l''(u)\neq0$, $(l,l',l'')=0$. If all the generators of a Catalan surface intersect the same straight line, then the surface is a conoid.

References

  • [1] E. Catalan, "Mémoire sur les surfaces gauches à plan directeur" , Paris (1843)
  • [a1] W. Klingenberg, "A course in differential geometry" , Springer (1978) (Translated from German) Zbl 0366.53001
  • [a2] R.S. Millman, G.D. Parker, "Elements of differential geometry" , Prentice-Hall (1977) pp. 31–35
How to Cite This Entry:
Catalan surface. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Catalan_surface&oldid=52682
This article was adapted from an original article by I.Kh. Sabitov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article