Difference between revisions of "Sum function of a function"
(fixing subscripts and superscripts) |
m (fixing subscript) |
||
Line 21: | Line 21: | ||
Examples of sum functions: the number of prime numbers ; | Examples of sum functions: the number of prime numbers \leq x ; | ||
− | $ \psi ( x) = \sum _ {n\leq } | + | $ \psi ( x) = \sum _ {n\leq x }\Lambda ( n) $— |
the [[Chebyshev function|Chebyshev function]]; the number of divisors of all n \leq x , | the [[Chebyshev function|Chebyshev function]]; the number of divisors of all n \leq x , | ||
etc. (see [[#References|[1]]], [[#References|[2]]]). | etc. (see [[#References|[1]]], [[#References|[2]]]). | ||
Line 160: | Line 160: | ||
where x> 1 , | where x> 1 , | ||
− | the J - | + | the J -function is |
− | function is | ||
$$ | $$ |
Revision as of 01:31, 26 April 2022
f
The function of x \geq 1 that denotes the sum of the values f( n) of the function f on the set of natural numbers n \leq x , \sum _ {n\leq } x f( n) . Sum functions are one of the basic means of expressing various properties of sequences of numbers.
Examples of sum functions: the number of prime numbers \leq x ; \psi ( x) = \sum _ {n\leq x }\Lambda ( n) — the Chebyshev function; the number of divisors of all n \leq x , etc. (see [1], [2]).
The basic problem is to find as accurate as possible an expression of the sum function, and for a sum function which does not have asymptotics, to find the best estimate of its modulus for large values of x .
The Cauchy integral theorem and Dirichlet series of the form
F( s) = \sum _ { n= 1} ^ \infty f( n) n ^ {- s}
form the basis of the analytic methods of studying sum functions. If such a series converges absolutely for \mathop{\rm Re} s > \sigma _ {0} \geq 1 , then for a non-integer x , and c > \sigma _ {0} , the identity
\sum _ { n\leq } x f( n) = \frac{1}{2 \pi i } \int\limits _ {c- i \infty } ^ { c+ i \infty } F( s) \frac{x ^ {s} }{s} ds
holds; a corresponding estimate of the sum function of f is obtained from this by analytic continuation of F( s) by shifting the integration path to the left to a certain \mathop{\rm Re} s = \sigma _ {1} < 0 and estimating the integral along the new path. If f( n) = \Lambda ( n) , for example, the integration can be shifted to \mathop{\rm Re} s = - \infty , which gives the Riemann–von Mangoldt formula for \psi ( x) . Of the common applications of the method, the following theorem is known.
Assumptions:
f( n) , l _ {n} are complex numbers, \alpha \geq 0 , \alpha _ {r} , \gamma _ {r} are real numbers, \sigma _ {r} , \beta _ {r} are positive numbers, \mu and \nu are integers \geq 1 , \Gamma is the gamma-function, and \lambda _ {1} < \lambda _ {2} < \dots .
1) For any \epsilon > 0 , f( n) \ll n ^ {\alpha + \epsilon } ;
2) the function
F( s) = \sum _ { n= 1 }^ \infty f( n) n ^ {- s} ,
defined for s = \sigma + it , \sigma > 1 + \alpha , is meromorphic in the whole plane, and has a finite number of poles in the strip \sigma _ {1} \leq \sigma \leq \sigma _ {2} ;
3) the series \sum _ {n= 1} ^ \infty l _ {n} \mathop{\rm exp} ( \lambda _ {n} s) converges absolutely when \sigma < 0 ;
4) for \sigma < 0 ,
\prod _ { r= 1} ^ \mu \Gamma ( \alpha _ {r} + \beta _ {r} s) F( s) =
= \ \prod _ { r= 1} ^ \nu \Gamma ( \gamma _ {r} - \delta _ {r} s) \sum _ { n= 1} ^ \infty l _ {n} \mathop{\rm exp} ( \lambda _ {n} s);
5) \beta _ {1} + \dots + \beta _ \mu = \delta _ {1} + \dots + \delta _ \nu ;
6) if one assumes that
\sum _ { r= 1} ^ \nu \gamma _ {r} - \sum _ { r= 1} ^ \mu \alpha _ {r} + \frac{1}{2} ( \mu - \nu ) = \eta ,
then \eta \geq \alpha + 1/2 .
For a fixed strip \sigma _ {1} \leq \sigma \leq \sigma _ {2} there is a constant \gamma = \gamma ( \sigma _ {1} , \sigma _ {2} ) such that for \sigma _ {1} \leq \sigma \leq \sigma _ {2} and large | t | the estimate F( s) \ll \mathop{\rm exp} ( \gamma | t | ) holds.
Conclusion.
For any \epsilon > 0 ,
\sum _ { n\leq } x f( n) = R( x) + O ( x ^ {\{ ( \alpha + 1) ( 2 \eta - 1) / ( 2 \eta + 1) \} + \epsilon } ) ,
where R( x) is the sum of the residues of the function F( s) x ^ {s} /s over all its poles in the strip
( \alpha + 1) \frac{2 \eta - 1 }{2 \eta + 1 } < \sigma \leq \alpha + 1.
References
[1] | E.C. Titchmarsh, "The theory of the Riemann zeta-function" , Clarendon Press (1951) |
[2] | L.-K. Hua, "Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie" , Enzyklopaedie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen , 1 : 2 (1959) (Heft 13, Teil 1) |
Comments
The Riemann–von Mangoldt formula, or von Mangoldt formula, for \psi ( x) , x> 1 , is
\psi ( x) = x - \sum _ { p } \frac{x ^ {p} }{p} + \sum _ { n } \frac{x ^ {- 2n }}{2n} + \textrm{ const } .
This is von Mangoldt's reformulation of Riemann's main formula
J( x) = \mathop{\rm Li} ( x) - \sum _ { p } \mathop{\rm Li} ( x ^ {p} ) - \mathop{\rm log} 2+ \int\limits _ { x } ^ \infty \frac{dt}{t( t ^ {2} - 1) \mathop{\rm log} t } ,
where x> 1 , the J -function is
J( x) = \frac{1}{2} \left ( \sum _ {p ^ {n} < x } \frac{1}{n} + \sum _ {p ^ {n} \leq x } \frac{1}{n} \right )
and \mathop{\rm Li} ( x) is the logarithmic integral
\mathop{\rm Li} ( x) = \lim\limits _ {\epsilon \downarrow 0 } \left [ \int\limits _ { 0 } ^ { {1-\epsilon } } \frac{dt}{ \mathop{\rm log} t } + \int\limits _ {1+ \epsilon } ^ { x } \frac{dt}{ \mathop{\rm log} t } \right ] .
References
[a1] | H.M. Edwards, "Riemann's zeta function" , Acad. Press (1974) pp. Chapt. 3 |
Sum function of a function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sum_function_of_a_function&oldid=52291