|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | ''<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h0480802.png" />-test''
| + | <!-- |
| + | h0480802.png |
| + | $#A+1 = 55 n = 0 |
| + | $#C+1 = 55 : ~/encyclopedia/old_files/data/H048/H.0408080 Hotelling test, |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | A test intended for testing a hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h0480803.png" /> according to which the true value of the unknown vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h0480804.png" /> of mathematical expectation of a non-degenerate <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h0480805.png" />-dimensional normal law <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h0480806.png" /> whose covariance matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h0480807.png" /> is also unknown, is the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h0480808.png" />. Hotelling's test is based on the following result. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h0480809.png" /> be independent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808010.png" />-dimensional random vectors, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808011.png" />, subject to the non-degenerate normal law <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808012.png" />, and let
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808013.png" /></td> </tr></table>
| + | '' $ T ^ {2} $-test'' |
| + | |
| + | A test intended for testing a hypothesis $ H _ {0} $ |
| + | according to which the true value of the unknown vector $ \mu = ( \mu _ {1}, \dots, \mu _ {p} ) $ |
| + | of mathematical expectation of a non-degenerate $ p $-dimensional normal law $ N ( \mu , B) $ |
| + | whose covariance matrix $ B $ |
| + | is also unknown, is the vector $ \mu = ( \mu _ {10}, \dots, \mu _ {p0} ) $. |
| + | Hotelling's test is based on the following result. Let $ X _ {1}, \dots, X _ {n} $ |
| + | be independent $ p $-dimensional random vectors, $ n - 1 \geq p $, |
| + | subject to the non-degenerate normal law $ N ( \mu , B) $, |
| + | and let |
| + | |
| + | $$ |
| + | T ^ {2} = \ |
| + | n ( \overline{X} - \mu _ {0} ) ^ {T } |
| + | S ^ {-1} ( \overline{X} - \mu _ {0} ), |
| + | $$ |
| | | |
| where | | where |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808014.png" /></td> </tr></table>
| + | $$ |
| + | \overline{X}\; = { |
| + | \frac{1}{n} |
| + | } \sum _ {i = 1 } ^ { n } X _ {i} $$ |
| | | |
| and | | and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808015.png" /></td> </tr></table>
| + | $$ |
| + | S = |
| + | \frac{1}{n - 1 } |
| + | |
| + | \sum _ {i = 1 } ^ { n } |
| + | ( X _ {i} - \overline{X} ) ( X _ {i} - \overline{X} ) ^ {T } |
| + | $$ |
| + | |
| + | are maximum-likelihood estimators for the unknown parameters $ \mu $ |
| + | and $ B $. |
| + | Then the statistic |
| + | |
| + | $$ |
| + | F = \ |
| + | |
| + | \frac{n - p }{p ( n - 1) } |
| + | |
| + | T ^ {2} |
| + | $$ |
| + | |
| + | has the non-central [[Fisher-F-distribution|Fisher $ F $-distribution]] with $ p $ |
| + | and $ n - p $ |
| + | degrees of freedom and non-centrality parameter |
| + | |
| + | $$ |
| + | n ( \mu - \mu _ {0} ) ^ {T } B ^ {-1} ( \mu - \mu _ {0} ); |
| + | $$ |
| | | |
− | are maximum-likelihood estimators for the unknown parameters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808017.png" />. Then the statistic
| + | the statistic $ T ^ {2} $ |
| + | has the [[Hotelling-T^2-distribution|Hotelling $ T ^ {2} $-distribution]]. Consequently, to test the hypothesis $ H _ {0} $: |
| + | $ \mu = \mu _ {0} $ |
| + | against the alternative $ H _ {1} $: |
| + | $ \mu \neq \mu _ {0} $ |
| + | one can compute the values of the statistic $ F $ |
| + | based on realizations of the independent random vectors $ X _ {1}, \dots, X _ {n} $ |
| + | from the non-degenerate $ p $-dimensional normal law $ N ( \mu , B) $, |
| + | which under the hypothesis $ H _ {0} $ |
| + | has the central $ F $-distribution with $ p $ |
| + | and $ n - p $ |
| + | degrees of freedom. Using Hotelling's test with significance level $ \alpha $, |
| + | $ H _ {0} $ |
| + | must be rejected if $ F \geq F _ \alpha ( p, n - p) $, |
| + | where $ F _ \alpha ( p, n - p) $ |
| + | is the $ \alpha $-quantile of the $ F $-distribution. The connection between Hotelling's test and the generalized likelihood-ratio test should be mentioned. Let |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808018.png" /></td> </tr></table>
| + | $$ |
| + | L ( \mu , B) = \ |
| + | L ( X _ {1}, \dots, X _ {n} ; \mu , B) = |
| + | $$ |
| | | |
− | has the non-central [[Fisher-F-distribution|Fisher <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808019.png" />-distribution]] with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808021.png" /> degrees of freedom and non-centrality parameter
| + | $$ |
| + | = \ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808022.png" /></td> </tr></table>
| + | \frac{| B ^ {-1} | ^ {n/2} }{( 2 \pi ) ^ {np/2} |
| + | } |
| + | \mathop{\rm exp} \left \{ - { |
| + | \frac{1}{2} |
| + | } \sum _ {i = 1 } ^ { n } ( X _ {i} - \mu ) ^ {T } B ^ {-1} ( X _ {i} - \mu ) \right \} |
| + | $$ |
| | | |
− | the statistic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808023.png" /> has the [[Hotelling-T^2-distribution|Hotelling <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808024.png" />-distribution]]. Consequently, to test the hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808025.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808026.png" /> against the alternative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808027.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808028.png" /> one can compute the values of the statistic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808029.png" /> based on realizations of the independent random vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808030.png" /> from the non-degenerate <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808031.png" />-dimensional normal law <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808032.png" />, which under the hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808033.png" /> has the central <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808034.png" />-distribution with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808035.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808036.png" /> degrees of freedom. Using Hotelling's test with significance level <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808037.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808038.png" /> must be rejected if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808039.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808040.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808041.png" />-quantile of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808042.png" />-distribution. The connection between Hotelling's test and the generalized likelihood-ratio test should be mentioned. Let | + | be the likelihood function computed from the sample $ X _ {1}, \dots, X _ {n} $. |
| + | The generalized likelihood-ratio test for testing the simple hypothesis $ H _ {0} $: |
| + | $ \mu = \mu _ {0} $ |
| + | against the compound alternative $ H _ {1} $: |
| + | $ \mu \neq \mu _ {0} $ |
| + | is constructed from the statistic |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808043.png" /></td> </tr></table>
| + | $$ |
| + | \lambda = \ |
| + | \lambda ( X _ {1}, \dots, X _ {n} ) = \ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808044.png" /></td> </tr></table>
| + | \frac{\sup _ { B } L ( \mu _ {0} , B) }{\sup _ {\mu , B } L ( \mu , B) } |
| + | . |
| + | $$ |
| | | |
− | be the likelihood function computed from the sample <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808045.png" />. The generalized likelihood-ratio test for testing the simple hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808046.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808047.png" /> against the compound alternative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808048.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808049.png" /> is constructed from the statistic
| + | The statistic $ \lambda $ |
| + | and the statistics $ T ^ {2} $ |
| + | and $ F $ |
| + | are related by: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808050.png" /></td> </tr></table>
| + | $$ |
| + | \lambda ^ {2/n} = \ |
| | | |
− | The statistic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808051.png" /> and the statistics <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808052.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808053.png" /> are related by:
| + | \frac{n - 1 }{T ^ {2} + n - 1 } |
| + | = \ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808054.png" /></td> </tr></table>
| + | \frac{n - p }{pF + n - p } |
| + | . |
| + | $$ |
| | | |
− | For testing the hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808055.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048080/h04808056.png" />, Hotelling's test is uniformly most powerful among all tests that are invariant under similarity transformations (see [[Most-powerful test|Most-powerful test]]; [[Invariant test|Invariant test]]). | + | For testing the hypothesis $ H _ {0} $: |
| + | $ \mu = \mu _ {0} $, |
| + | Hotelling's test is uniformly most powerful among all tests that are invariant under similarity transformations (see [[Most-powerful test|Most-powerful test]]; [[Invariant test|Invariant test]]). |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> T.W. Anderson, "An introduction to multivariate statistical analysis" , Wiley (1984)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> C.R. Rao, "Linear statistical inference and its applications" , Wiley (1973)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> T.W. Anderson, "An introduction to multivariate statistical analysis" , Wiley (1984)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> C.R. Rao, "Linear statistical inference and its applications" , Wiley (1973)</TD></TR></table> |
$ T ^ {2} $-test
A test intended for testing a hypothesis $ H _ {0} $
according to which the true value of the unknown vector $ \mu = ( \mu _ {1}, \dots, \mu _ {p} ) $
of mathematical expectation of a non-degenerate $ p $-dimensional normal law $ N ( \mu , B) $
whose covariance matrix $ B $
is also unknown, is the vector $ \mu = ( \mu _ {10}, \dots, \mu _ {p0} ) $.
Hotelling's test is based on the following result. Let $ X _ {1}, \dots, X _ {n} $
be independent $ p $-dimensional random vectors, $ n - 1 \geq p $,
subject to the non-degenerate normal law $ N ( \mu , B) $,
and let
$$
T ^ {2} = \
n ( \overline{X} - \mu _ {0} ) ^ {T }
S ^ {-1} ( \overline{X} - \mu _ {0} ),
$$
where
$$
\overline{X}\; = {
\frac{1}{n}
} \sum _ {i = 1 } ^ { n } X _ {i} $$
and
$$
S =
\frac{1}{n - 1 }
\sum _ {i = 1 } ^ { n }
( X _ {i} - \overline{X} ) ( X _ {i} - \overline{X} ) ^ {T }
$$
are maximum-likelihood estimators for the unknown parameters $ \mu $
and $ B $.
Then the statistic
$$
F = \
\frac{n - p }{p ( n - 1) }
T ^ {2}
$$
has the non-central Fisher $ F $-distribution with $ p $
and $ n - p $
degrees of freedom and non-centrality parameter
$$
n ( \mu - \mu _ {0} ) ^ {T } B ^ {-1} ( \mu - \mu _ {0} );
$$
the statistic $ T ^ {2} $
has the Hotelling $ T ^ {2} $-distribution. Consequently, to test the hypothesis $ H _ {0} $:
$ \mu = \mu _ {0} $
against the alternative $ H _ {1} $:
$ \mu \neq \mu _ {0} $
one can compute the values of the statistic $ F $
based on realizations of the independent random vectors $ X _ {1}, \dots, X _ {n} $
from the non-degenerate $ p $-dimensional normal law $ N ( \mu , B) $,
which under the hypothesis $ H _ {0} $
has the central $ F $-distribution with $ p $
and $ n - p $
degrees of freedom. Using Hotelling's test with significance level $ \alpha $,
$ H _ {0} $
must be rejected if $ F \geq F _ \alpha ( p, n - p) $,
where $ F _ \alpha ( p, n - p) $
is the $ \alpha $-quantile of the $ F $-distribution. The connection between Hotelling's test and the generalized likelihood-ratio test should be mentioned. Let
$$
L ( \mu , B) = \
L ( X _ {1}, \dots, X _ {n} ; \mu , B) =
$$
$$
= \
\frac{| B ^ {-1} | ^ {n/2} }{( 2 \pi ) ^ {np/2}
}
\mathop{\rm exp} \left \{ - {
\frac{1}{2}
} \sum _ {i = 1 } ^ { n } ( X _ {i} - \mu ) ^ {T } B ^ {-1} ( X _ {i} - \mu ) \right \}
$$
be the likelihood function computed from the sample $ X _ {1}, \dots, X _ {n} $.
The generalized likelihood-ratio test for testing the simple hypothesis $ H _ {0} $:
$ \mu = \mu _ {0} $
against the compound alternative $ H _ {1} $:
$ \mu \neq \mu _ {0} $
is constructed from the statistic
$$
\lambda = \
\lambda ( X _ {1}, \dots, X _ {n} ) = \
\frac{\sup _ { B } L ( \mu _ {0} , B) }{\sup _ {\mu , B } L ( \mu , B) }
.
$$
The statistic $ \lambda $
and the statistics $ T ^ {2} $
and $ F $
are related by:
$$
\lambda ^ {2/n} = \
\frac{n - 1 }{T ^ {2} + n - 1 }
= \
\frac{n - p }{pF + n - p }
.
$$
For testing the hypothesis $ H _ {0} $:
$ \mu = \mu _ {0} $,
Hotelling's test is uniformly most powerful among all tests that are invariant under similarity transformations (see Most-powerful test; Invariant test).
References
[1] | T.W. Anderson, "An introduction to multivariate statistical analysis" , Wiley (1984) |
[2] | C.R. Rao, "Linear statistical inference and its applications" , Wiley (1973) |