Namespaces
Variants
Actions

Difference between revisions of "Chebyshev constant"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (fixing spaces)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
A numerical invariant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c0218501.png" /> of a compact set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c0218502.png" /> in the complex plane that is used in the theory of best approximation.
+
<!--
 +
c0218501.png
 +
$#A+1 = 32 n = 0
 +
$#C+1 = 32 : ~/encyclopedia/old_files/data/C021/C.0201850 Chebyshev constant
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c0218503.png" /> be the class of all polynomials
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c0218504.png" /></td> </tr></table>
+
A numerical invariant  $  \tau = \tau ( E) $
 +
of a compact set  $  E $
 +
in the complex plane that is used in the theory of best approximation.
  
of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c0218505.png" />, and let
+
Let  $  K _ {n} $
 +
be the class of all polynomials
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c0218506.png" /></td> </tr></table>
+
$$
 +
p _ {n} ( z)  = z  ^ {n} + c _ {1} z  ^ {n-1} + \dots + c _ {n}  $$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c0218507.png" /></td> </tr></table>
+
of degree  $  n $,
 +
and let
  
There exists a polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c0218508.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c0218509.png" />; it is called the Chebyshev polynomial for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c02185010.png" />. Moreover, the limit
+
$$
 +
M ( p _ {n} )  = \max  \{ {| p _ {n} ( z) | } : {z \in E } \}
 +
,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c02185011.png" /></td> </tr></table>
+
$$
 +
m _ {n}  = \inf  \{ {M ( p _ {n} ) } : {p _ {n} \in K _ {n} } \} ,\  \tau _ {n}  = {m _ {n} }  ^ {1/n} .
 +
$$
  
exists, and is called the Chebyshev constant for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c02185012.png" />.
+
There exists a polynomial  $  t _ {n} ( z) \in K _ {n} $
 +
for which  $  M ( t _ {n} ) = m _ {n} $;
 +
it is called the Chebyshev polynomial for $  E $.  
 +
Moreover, the limit
  
Restricting oneself to the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c02185013.png" /> of all polynomials
+
$$
 +
\lim\limits _ {n \rightarrow \infty }  \tau _ {n}  = \tau
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c02185014.png" /></td> </tr></table>
+
exists, and is called the Chebyshev constant for  $  E $.
  
all zeros of which lie in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c02185015.png" />, one obtains corresponding values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c02185016.png" /> and a polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c02185017.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c02185018.png" /> (it is also called the Chebyshev polynomial).
+
Restricting oneself to the class  $  \widetilde{K}  _ {n} $
 +
of all polynomials
  
It is known that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c02185019.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c02185020.png" /> is the [[Capacity|capacity]] of the compact set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c02185021.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c02185022.png" /> is its [[Transfinite diameter|transfinite diameter]] (cf., for example, [[#References|[1]]]).
+
$$
 +
\widetilde{p}  _ {n} ( z)  = z  ^ {n} + \dots + \widetilde{c}  _ {n}  $$
  
The concept of the Chebyshev constant generalizes to compact sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c02185023.png" /> in higher-dimensional Euclidean spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c02185024.png" /> starting from [[Potential theory|potential theory]]. For a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c02185025.png" />, let
+
all zeros of which lie in $  E $,
 +
one obtains corresponding values  $  \widetilde{m}  _ {n} , \widetilde \tau  _ {n} , \widetilde \tau  $
 +
and a polynomial  $  \widetilde{t}  _ {n} ( z) $
 +
for which  $  M ( \widetilde{t}  _ {n} ) = \widetilde{m}  _ {n} $ (it is also called the Chebyshev polynomial).
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c02185026.png" /></td> </tr></table>
+
It is known that  $  \tau = \widetilde \tau  = C ( E) = d $,
 +
where  $  C ( E) $
 +
is the [[Capacity|capacity]] of the compact set  $  E $,
 +
and  $  d $
 +
is its [[Transfinite diameter|transfinite diameter]] (cf., for example, [[#References|[1]]]).
  
be the fundamental solution of the Laplace equation, and for a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c02185027.png" />, let
+
The concept of the Chebyshev constant generalizes to compact sets  $  E $
 +
in higher-dimensional Euclidean spaces  $  \mathbf R  ^ {m} $
 +
starting from [[Potential theory|potential theory]]. For a point  $  x \in \mathbf R  ^ {m} $,  
 +
let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c02185028.png" /></td> </tr></table>
+
$$
 +
H ( | x | )  = \left \{
 +
\begin{array}{ll}
 +
\mathop{\rm ln} 
 +
\frac{1}{| x | }
 +
  & \textrm{ for }  m = 2 ,  \\
  
Then for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c02185029.png" /> one obtains the relation
+
\frac{1}{| x |  ^ {m-2} }
 +
  & \textrm{ for }  m \geq  3 ,  \\
 +
\end{array}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c02185030.png" /></td> </tr></table>
+
\right .$$
  
and for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c02185031.png" /> one obtains (cf. [[#References|[2]]]):
+
be the fundamental solution of the Laplace equation, and for a set  $  ( x _ {j} ) _ {j=1}  ^ {n} \subset  E $,
 +
let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c02185032.png" /></td> </tr></table>
+
$$
 +
\sigma _ {n} ( E)  = \sup \left \{ {\min \left \{ {
 +
\frac{1}{n}
 +
\sum _ { j= 1} ^ { n }  H ( | x - x _ {j} | ) } : {x \in E  } \right \} }
 +
: {( x _ {j} ) _ {j=1}  ^ {n} \subset  E  } \right \} .
 +
$$
 +
 
 +
Then for  $  m = 2 $
 +
one obtains the relation
 +
 
 +
$$
 +
\tau  =  \widetilde \tau    = C ( E)  =   \mathop{\rm exp} \left ( - \lim\limits _ {n \rightarrow \infty } \
 +
\sigma _ {n} ( E) \right ) ,
 +
$$
 +
 
 +
and for  $  m \geq  3 $
 +
one obtains (cf. [[#References|[2]]]):
 +
 
 +
$$
 +
\tau  = C ( E)  =
 +
\frac{1}{\lim\limits _ {n \rightarrow \infty }  \sigma _ {n} ( E) }
 +
.
 +
$$
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G.M. Goluzin,  "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc.  (1969)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L. Carleson,  "Selected problems on exceptional sets" , v. Nostrand  (1967)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G.M. Goluzin,  "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc.  (1969)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L. Carleson,  "Selected problems on exceptional sets" , v. Nostrand  (1967)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Tsuji,  "Potential theory in modern function theory" , Chelsea, reprint  (1975)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J.L. Walsh,  "Interpolation and approximation by rational functions in the complex domain" , Amer. Math. Soc.  (1956)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Tsuji,  "Potential theory in modern function theory" , Chelsea, reprint  (1975)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J.L. Walsh,  "Interpolation and approximation by rational functions in the complex domain" , Amer. Math. Soc.  (1956)</TD></TR></table>

Latest revision as of 06:48, 22 February 2022


A numerical invariant $ \tau = \tau ( E) $ of a compact set $ E $ in the complex plane that is used in the theory of best approximation.

Let $ K _ {n} $ be the class of all polynomials

$$ p _ {n} ( z) = z ^ {n} + c _ {1} z ^ {n-1} + \dots + c _ {n} $$

of degree $ n $, and let

$$ M ( p _ {n} ) = \max \{ {| p _ {n} ( z) | } : {z \in E } \} , $$

$$ m _ {n} = \inf \{ {M ( p _ {n} ) } : {p _ {n} \in K _ {n} } \} ,\ \tau _ {n} = {m _ {n} } ^ {1/n} . $$

There exists a polynomial $ t _ {n} ( z) \in K _ {n} $ for which $ M ( t _ {n} ) = m _ {n} $; it is called the Chebyshev polynomial for $ E $. Moreover, the limit

$$ \lim\limits _ {n \rightarrow \infty } \tau _ {n} = \tau $$

exists, and is called the Chebyshev constant for $ E $.

Restricting oneself to the class $ \widetilde{K} _ {n} $ of all polynomials

$$ \widetilde{p} _ {n} ( z) = z ^ {n} + \dots + \widetilde{c} _ {n} $$

all zeros of which lie in $ E $, one obtains corresponding values $ \widetilde{m} _ {n} , \widetilde \tau _ {n} , \widetilde \tau $ and a polynomial $ \widetilde{t} _ {n} ( z) $ for which $ M ( \widetilde{t} _ {n} ) = \widetilde{m} _ {n} $ (it is also called the Chebyshev polynomial).

It is known that $ \tau = \widetilde \tau = C ( E) = d $, where $ C ( E) $ is the capacity of the compact set $ E $, and $ d $ is its transfinite diameter (cf., for example, [1]).

The concept of the Chebyshev constant generalizes to compact sets $ E $ in higher-dimensional Euclidean spaces $ \mathbf R ^ {m} $ starting from potential theory. For a point $ x \in \mathbf R ^ {m} $, let

$$ H ( | x | ) = \left \{ \begin{array}{ll} \mathop{\rm ln} \frac{1}{| x | } & \textrm{ for } m = 2 , \\ \frac{1}{| x | ^ {m-2} } & \textrm{ for } m \geq 3 , \\ \end{array} \right .$$

be the fundamental solution of the Laplace equation, and for a set $ ( x _ {j} ) _ {j=1} ^ {n} \subset E $, let

$$ \sigma _ {n} ( E) = \sup \left \{ {\min \left \{ { \frac{1}{n} \sum _ { j= 1} ^ { n } H ( | x - x _ {j} | ) } : {x \in E } \right \} } : {( x _ {j} ) _ {j=1} ^ {n} \subset E } \right \} . $$

Then for $ m = 2 $ one obtains the relation

$$ \tau = \widetilde \tau = C ( E) = \mathop{\rm exp} \left ( - \lim\limits _ {n \rightarrow \infty } \ \sigma _ {n} ( E) \right ) , $$

and for $ m \geq 3 $ one obtains (cf. [2]):

$$ \tau = C ( E) = \frac{1}{\lim\limits _ {n \rightarrow \infty } \sigma _ {n} ( E) } . $$

References

[1] G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian)
[2] L. Carleson, "Selected problems on exceptional sets" , v. Nostrand (1967)

Comments

References

[a1] M. Tsuji, "Potential theory in modern function theory" , Chelsea, reprint (1975)
[a2] J.L. Walsh, "Interpolation and approximation by rational functions in the complex domain" , Amer. Math. Soc. (1956)
How to Cite This Entry:
Chebyshev constant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Chebyshev_constant&oldid=17435
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article