Difference between revisions of "Spectral sequence"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
m (fixing }) |
||
(5 intermediate revisions by 2 users not shown) | |||
Line 15: | Line 15: | ||
All known spectral sequences can be obtained from exact couples. An exact couple $ ( D ^ {1} , E ^ {1} , i ^ {1} , j ^ {1} , k ^ {1} ) $ | All known spectral sequences can be obtained from exact couples. An exact couple $ ( D ^ {1} , E ^ {1} , i ^ {1} , j ^ {1} , k ^ {1} ) $ | ||
is defined as an exact diagram of the form | is defined as an exact diagram of the form | ||
+ | |||
+ | $$ | ||
+ | |||
+ | \begin{array}{lcccl} | ||
+ | D ^ {1} &{} & \rightarrow ^ { {i ^ {1}} } &{} &D ^ {1} \\ | ||
+ | {} &{} _ {k ^ {1} } &{} &{} _ {j ^ {1} } &{} \\ | ||
+ | {} &{} &E ^ {1} &{} &{} \\ | ||
+ | \end{array} | ||
$$ | $$ | ||
Line 26: | Line 34: | ||
1) The Leray spectral sequence. A filtered chain complex of modules $ ( \{ K ^ {p} \} , d) $ | 1) The Leray spectral sequence. A filtered chain complex of modules $ ( \{ K ^ {p} \} , d) $ | ||
− | determines an exact couple of bigraded modules $ D _ {p,q} ^ {1} = H _ {p+} | + | determines an exact couple of bigraded modules $ D _ {p,q} ^ {1} = H _ {p+q} ( K ^ {p} ) $, |
− | $ E _ {p,q} ^ {1} = H _ {p+} | + | $ E _ {p,q} ^ {1} = H _ {p+q} ( K ^ {p} / K ^ {p-1} ) $. |
In the associated spectral sequence, the bidegree of the differential $ d ^ {r} $ | In the associated spectral sequence, the bidegree of the differential $ d ^ {r} $ | ||
is equal to $ (- r, r- 1) $, | is equal to $ (- r, r- 1) $, | ||
Line 34: | Line 42: | ||
$$ | $$ | ||
E _ {p,q} ^ {r} = | E _ {p,q} ^ {r} = | ||
− | \frac{ \mathop{\rm Ker} ( d _ {p,q} ^ {r-} | + | \frac{ \mathop{\rm Ker} ( d _ {p,q} ^ {r-1} : E _ {p,q} ^ {r-1} \rightarrow E _ {p-r+ 1,q+ r- 2} ^ {r-1} ) }{ |
− | \mathop{\rm Im} ( d _ {p+ | + | \mathop{\rm Im} ( d _ {p+r- 1,q- r+ 2} ^ {r-1} : E _ {p+r- 1,q- r+ 2} ^ {r-1} \rightarrow E _ {p,q} ^ {r-1} ) } |
\simeq | \simeq | ||
$$ | $$ | ||
Line 41: | Line 49: | ||
$$ | $$ | ||
\simeq | \simeq | ||
− | \frac{ \mathop{\rm Im} ( H _ {p+} | + | \frac{ \mathop{\rm Im} ( H _ {p+q} ( K ^ {p} / K ^ {p-r} ) \rightarrow H _ {p+q} ( K ^ {p} / K ^ {p-1} )) }{ \mathop{\rm Im} ( \partial |
− | : H _ {p+ | + | : H _ {p+q+ 1} ( K ^ {p+r- 1} / K ^ {p} ) \rightarrow H _ {p+q} ( K ^ {p} / K ^ {p-1} )) } |
. | . | ||
$$ | $$ | ||
− | The modules $ F _ {p,q} = \mathop{\rm Im} ( H _ {p+} | + | The modules $ F _ {p,q} = \mathop{\rm Im} ( H _ {p+q} ( K ^ {p} ) \rightarrow H _ {p+q} ( K)) $ |
form a filtration of $ H _ {*} ( K) $. | form a filtration of $ H _ {*} ( K) $. | ||
The bigraded module | The bigraded module | ||
$$ | $$ | ||
− | E _ {p,q} ^ \infty = F _ {p,q} / F _ {p- | + | E _ {p,q} ^ \infty = F _ {p,q} / F _ {p-1,q+ 1} \simeq |
$$ | $$ | ||
$$ | $$ | ||
\simeq | \simeq | ||
− | \frac{ \mathop{\rm Im} ( H _ {p+} | + | \frac{ \mathop{\rm Im} ( H _ {p+q} ( K ^ {p} ) \rightarrow H _ {p+q} ( K ^ {p} / K ^ {p-1} )) }{ \mathop{\rm Im} ( |
− | \partial : H _ {p+ | + | \partial : H _ {p+q+ 1} ( K / K ^ {p} ) \rightarrow H _ {p+q} ( K ^ {p} / K ^ {p-1} )) } |
$$ | $$ | ||
Line 71: | Line 79: | ||
when $ p< 0 $ | when $ p< 0 $ | ||
or $ q< 0 $; | or $ q< 0 $; | ||
− | such a spectral sequence is called a first-quadrant spectral sequence. Moreover, $ E _ {p,q} ^ {r} \simeq E _ {p,q} ^ {r+} | + | such a spectral sequence is called a first-quadrant spectral sequence. Moreover, $ E _ {p,q} ^ {r} \simeq E _ {p,q} ^ {r+1} \simeq E _ {p,q} ^ \infty $ |
when $ r > \max ( p, q+ 1) $. | when $ r > \max ( p, q+ 1) $. | ||
In this case one says that the spectral sequence converges to $ H _ {*} ( K) $, | In this case one says that the spectral sequence converges to $ H _ {*} ( K) $, | ||
− | and writes $ E _ {p,q} ^ {r} \Rightarrow H _ {p+} | + | and writes $ E _ {p,q} ^ {r} \Rightarrow H _ {p+q} ( K) $. |
2) The Leray–Serre spectral sequence is a special case of the Leray spectral sequence above arising from a chain (or cochain) complex of a filtered topological space. E.g., the filtration of a [[CW-complex|CW-complex]] $ X $ | 2) The Leray–Serre spectral sequence is a special case of the Leray spectral sequence above arising from a chain (or cochain) complex of a filtered topological space. E.g., the filtration of a [[CW-complex|CW-complex]] $ X $ | ||
− | by its skeletons gives the collapsing spectral sequence $ E _ {p,q} ^ {r} \Rightarrow H _ {p+} | + | by its skeletons gives the collapsing spectral sequence $ E _ {p,q} ^ {r} \Rightarrow H _ {p+q} ( X) $, |
for which $ E _ {p,q} ^ {r} = E _ {p,q} ^ \infty = 0 $ | for which $ E _ {p,q} ^ {r} = E _ {p,q} ^ \infty = 0 $ | ||
when $ q \neq 0 $ | when $ q \neq 0 $ | ||
Line 83: | Line 91: | ||
The Leray–Serre spectral sequence is obtained from the filtration of the total space $ E $ | The Leray–Serre spectral sequence is obtained from the filtration of the total space $ E $ | ||
of the Serre fibration $ F \rightarrow ^ {i} E \rightarrow ^ {p} B $ | of the Serre fibration $ F \rightarrow ^ {i} E \rightarrow ^ {p} B $ | ||
− | by the pre-images $ p ^ {-} | + | by the pre-images $ p ^ {-1} ( B ^ {n} ) $ |
of the skeletons $ B ^ {n} $ | of the skeletons $ B ^ {n} $ | ||
of the base $ B $. | of the base $ B $. | ||
Line 89: | Line 97: | ||
and base $ B $ | and base $ B $ | ||
are path-connected, then for every coefficient group $ G $ | are path-connected, then for every coefficient group $ G $ | ||
− | this gives the spectral sequence $ E _ {p,q} ^ {r} \Rightarrow H _ {p+} | + | this gives the spectral sequence $ E _ {p,q} ^ {r} \Rightarrow H _ {p+q} ( E, G) $ |
with differentials $ d ^ {r} $ | with differentials $ d ^ {r} $ | ||
of bidegree $ ( - r, r- 1) $ | of bidegree $ ( - r, r- 1) $ | ||
Line 121: | Line 129: | ||
where $ r $ | where $ r $ | ||
is sufficiently large. The differential $ d _ {n,0} ^ {n} $ | is sufficiently large. The differential $ d _ {n,0} ^ {n} $ | ||
− | of the spectral sequence coincides with the [[Transgression|transgression]] $ \tau : H _ {n} ( B; G) \rightarrow H _ {n-} | + | of the spectral sequence coincides with the [[Transgression|transgression]] $ \tau : H _ {n} ( B; G) \rightarrow H _ {n-1} ( F; G) $. |
− | This homology Leray–Serre spectral sequence is dual to the cohomology Leray–Serre spectral sequence $ E _ {r} ^ {p,q} \Rightarrow H ^ {p+} | + | This homology Leray–Serre spectral sequence is dual to the cohomology Leray–Serre spectral sequence $ E _ {r} ^ {p,q} \Rightarrow H ^ {p+q} ( E; G) $, |
with differentials $ d _ {r} $ | with differentials $ d _ {r} $ | ||
of bidegree $ ( r, - r+ 1) $, | of bidegree $ ( r, - r+ 1) $, | ||
Line 131: | Line 139: | ||
is a bigraded ring, $ d _ {r} $ | is a bigraded ring, $ d _ {r} $ | ||
is differentiation in $ E _ {r} $, | is differentiation in $ E _ {r} $, | ||
− | and the multiplication in $ E _ {r+} | + | and the multiplication in $ E _ {r+1} $ |
is induced by that in $ E _ {r} $. | is induced by that in $ E _ {r} $. | ||
If $ G $ | If $ G $ | ||
Line 137: | Line 145: | ||
is simply connected, then $ E _ {2} ^ {**} \simeq H ^ {*} ( B; G) \otimes H ^ {*} ( F; G) $. | is simply connected, then $ E _ {2} ^ {**} \simeq H ^ {*} ( B; G) \otimes H ^ {*} ( F; G) $. | ||
− | 3) The Atiyah–Hirzebruch (–Whitehead) spectral sequence is obtained by applying the generalized (co)homology functor $ h _ {*} $( | + | 3) The Atiyah–Hirzebruch (–Whitehead) spectral sequence is obtained by applying the generalized (co)homology functor $ h _ {*} $ ($ h ^ {*} $) |
− | $ h ^ {*} $) | ||
to the same filtration of the space $ E $. | to the same filtration of the space $ E $. | ||
− | In its cohomological version, $ E _ {r} ^ {p,q} \Rightarrow h ^ {p+} | + | In its cohomological version, $ E _ {r} ^ {p,q} \Rightarrow h ^ {p+q} ( E) $, |
$ E _ {2} ^ {p,q} = H ^ {p} ( B; h ^ {q} ( F )) $. | $ E _ {2} ^ {p,q} = H ^ {p} ( B; h ^ {q} ( F )) $. | ||
In contrast to the Leray–Serre spectral sequence, the Atiyah–Hirzebruch spectral sequence for the trivial fibration $ \mathop{\rm id} : X \rightarrow X $ | In contrast to the Leray–Serre spectral sequence, the Atiyah–Hirzebruch spectral sequence for the trivial fibration $ \mathop{\rm id} : X \rightarrow X $ | ||
Line 146: | Line 153: | ||
4) An Eilenberg–Moore spectral sequence is associated with any square of fibrations | 4) An Eilenberg–Moore spectral sequence is associated with any square of fibrations | ||
+ | |||
+ | $$ | ||
+ | |||
+ | \begin{array}{ccc} | ||
+ | E & \rightarrow & X \\ | ||
+ | \downarrow &{} &\downarrow \\ | ||
+ | Y & \rightarrow & B \\ | ||
+ | \end{array} | ||
$$ | $$ | ||
Line 156: | Line 171: | ||
$$ | $$ | ||
− | E _ {2} ^ {p,q} \simeq | + | E _ {2} ^ {p,q} \simeq {\mathrm Tor} _ {H ^ {*} |
( B;R) } ^ {p,q} ( H ^ {*} ( X; R); H ^ {*} ( Y; R)). | ( B;R) } ^ {p,q} ( H ^ {*} ( X; R); H ^ {*} ( Y; R)). | ||
$$ | $$ | ||
If $ R $ | If $ R $ | ||
− | is a field and the square consists of $ H $- | + | is a field and the square consists of $ H $-spaces and $ H $-mappings, then this is a spectral sequence in the category of bigraded Hopf algebras. |
− | spaces and $ H $- | ||
− | mappings, then this is a spectral sequence in the category of bigraded Hopf algebras. | ||
5) The Adams spectral sequence $ E _ {r} ^ {s,t} $ | 5) The Adams spectral sequence $ E _ {r} ^ {s,t} $ | ||
is defined for every prime $ p\geq 2 $ | is defined for every prime $ p\geq 2 $ | ||
and all spaces $ X $ | and all spaces $ X $ | ||
− | and $ Y $( | + | and $ Y $ (satisfying certain finiteness conditions). One has |
− | satisfying certain finiteness conditions). One has | ||
$$ | $$ | ||
− | E _ {2} ^ {s,t} \simeq | + | E _ {2} ^ {s,t} \simeq {\mathrm Ext} _ {A _ {p}} ^ {s,t} ( H |
^ {*} ( X; \mathbf Z _ {p} ); H ^ {*} ( Y ; \mathbf Z _ {p} )), | ^ {*} ( X; \mathbf Z _ {p} ); H ^ {*} ( Y ; \mathbf Z _ {p} )), | ||
$$ | $$ | ||
Line 181: | Line 193: | ||
is equal to $ ( r, r- 1) $. | is equal to $ ( r, r- 1) $. | ||
This spectral sequence converges in the sense that, when $ r> s $, | This spectral sequence converges in the sense that, when $ r> s $, | ||
− | there is a monomorphism $ E _ {r+} | + | there is a monomorphism $ E _ {r+1} ^ {s,t} \rightarrow E _ {r} ^ {s,t} $, |
− | and so the group $ E _ \infty ^ {s,t} = \cap _ {r>} | + | and so the group $ E _ \infty ^ {s,t} = \cap _ {r>s} E _ {r} ^ {s,t} $ |
is defined. There is a decreasing filtration $ \{ F ^ { s } \} $ | is defined. There is a decreasing filtration $ \{ F ^ { s } \} $ | ||
of the group $ \{ Y, X \} $ | of the group $ \{ Y, X \} $ | ||
Line 189: | Line 201: | ||
$$ | $$ | ||
− | F ^ { s } \{ S ^ {t-} | + | F ^ { s } \{ S ^ {t-s} YX \} / F ^ { s+ 1 } \{ S ^ {t-s} Y, X \} \simeq E _ \infty ^ {s,t} , |
$$ | $$ | ||
Line 196: | Line 208: | ||
of finite order prime with $ p $. | of finite order prime with $ p $. | ||
When $ X= Y= S ^ {0} $, | When $ X= Y= S ^ {0} $, | ||
− | this spectral sequence enables one "in principle" to calculate the $ p $- | + | this spectral sequence enables one "in principle" to calculate the $ p $-components of the stable homotopy groups of spheres. The Adams spectral sequence has been generalized by A.S. Mishchenko and S.P. Novikov to arbitrary [[Generalized cohomology theories|generalized cohomology theories]]. There are also extensions of the Adams spectral sequence that converge to non-stable homotopy groups. |
− | components of the stable homotopy groups of spheres. The Adams spectral sequence has been generalized by A.S. Mishchenko and S.P. Novikov to arbitrary [[Generalized cohomology theories|generalized cohomology theories]]. There are also extensions of the Adams spectral sequence that converge to non-stable homotopy groups. | ||
====References==== | ====References==== | ||
Line 205: | Line 216: | ||
Let $ ( E ^ {n} , d ^ {n} ) $, | Let $ ( E ^ {n} , d ^ {n} ) $, | ||
$ n = 2, 3 \dots $ | $ n = 2, 3 \dots $ | ||
− | be a spectral sequence, so that $ E ^ {n+} | + | be a spectral sequence, so that $ E ^ {n+1} $ |
is the homology of $ ( E ^ {n} , d ^ {n} ) $. | is the homology of $ ( E ^ {n} , d ^ {n} ) $. | ||
A spectral sequence defines a series of modules of the initial term $ E ^ {2} $, | A spectral sequence defines a series of modules of the initial term $ E ^ {2} $, | ||
Line 218: | Line 229: | ||
$$ | $$ | ||
− | with $ E ^ {r+} | + | with $ E ^ {r+1} = C ^ {r} / B ^ {r} $, |
− | and $ C ^ {r+} | + | and $ C ^ {r+1} /B ^ {r} $ |
is the kernel of $ d ^ {r} : E ^ {r} \rightarrow E ^ {r} $, | is the kernel of $ d ^ {r} : E ^ {r} \rightarrow E ^ {r} $, | ||
− | while $ B ^ {r+} | + | while $ B ^ {r+1} /B ^ {r} $ |
is the image of $ d ^ {r} $. | is the image of $ d ^ {r} $. | ||
One now defines the infinity terms: | One now defines the infinity terms: | ||
Line 234: | Line 245: | ||
If $ ( E ^ {n} , d ^ {n} ) $ | If $ ( E ^ {n} , d ^ {n} ) $ | ||
is a spectral sequence of bigraded modules $ E ^ {n} = \oplus E _ {p,q} ^ {n} $, | is a spectral sequence of bigraded modules $ E ^ {n} = \oplus E _ {p,q} ^ {n} $, | ||
− | $ d ^ {r} : E _ {p,q} ^ {r} \rightarrow E _ {p- | + | $ d ^ {r} : E _ {p,q} ^ {r} \rightarrow E _ {p-r,q+ r- 1} ^ {r} $, |
all the $ B ^ {i} $, | all the $ B ^ {i} $, | ||
$ C ^ {i} $, | $ C ^ {i} $, | ||
Line 254: | Line 265: | ||
$$ | $$ | ||
− | E _ {p+ | + | E _ {p+r,q- r+ 1} ^ {r} \rightarrow ^ { {d ^ {r}} } E _ {p,q} ^ {r} |
− | \rightarrow ^ { {d ^ {r}} } E _ {p- | + | \rightarrow ^ { {d ^ {r}} } E _ {p-r,q+ r- 1} ^ {r} |
$$ | $$ | ||
− | both the outside modules are zero, so that $ E _ {p,q} ^ {r} = E _ {p,q} ^ {r+} | + | both the outside modules are zero, so that $ E _ {p,q} ^ {r} = E _ {p,q} ^ {r+1} = E _ {p,q} ^ \infty $ |
for $ r $ | for $ r $ | ||
large enough. | large enough. | ||
− | For a first-quadrant spectral sequence one also always has that $ E _ {p,0} ^ {r+} | + | For a first-quadrant spectral sequence one also always has that $ E _ {p,0} ^ {r+1} $ |
is a submodule of $ E _ {p,0} ^ {r} $, | is a submodule of $ E _ {p,0} ^ {r} $, | ||
− | and $ E _ {0,q} ^ {r+} | + | and $ E _ {0,q} ^ {r+1} $ |
is a quotient of $ E _ {0,q} ^ {r} $, | is a quotient of $ E _ {0,q} ^ {r} $, | ||
giving rise to sequences of monomorphisms and epimorphisms: | giving rise to sequences of monomorphisms and epimorphisms: | ||
$$ | $$ | ||
− | E _ {p,0} ^ \infty = E _ {p,0} ^ {p+} | + | E _ {p,0} ^ \infty = E _ {p,0} ^ {p+1} \rightarrow \dots \rightarrow E _ {p,0} ^ {3} \rightarrow E _ {p,0} ^ {2} , |
$$ | $$ | ||
$$ | $$ | ||
E _ {0,q} ^ {2} \rightarrow E _ {0,q} ^ {3} \rightarrow | E _ {0,q} ^ {2} \rightarrow E _ {0,q} ^ {3} \rightarrow | ||
− | \dots \rightarrow E _ {0,q} ^ {q+} | + | \dots \rightarrow E _ {0,q} ^ {q+2} = E _ {0,q} ^ \infty , |
$$ | $$ | ||
Line 284: | Line 295: | ||
$$ | $$ | ||
− | \dots \subset A _ {p-} | + | \dots \subset A _ {p-1} \subset A _ {p} \subset A _ {p+1} \subset \dots |
$$ | $$ | ||
Line 290: | Line 301: | ||
$$ | $$ | ||
− | \mathop{\rm Gr} ( A) = \oplus _ { p } A _ {p} / A _ {p-} | + | \mathop{\rm Gr} ( A) = \oplus _ { p } A _ {p} / A _ {p-1} . |
$$ | $$ | ||
Line 306: | Line 317: | ||
$$ \tag{* } | $$ \tag{* } | ||
− | E _ {p} ^ \infty \simeq F _ {p} H /F _ {p+} | + | E _ {p} ^ \infty \simeq F _ {p} H /F _ {p+1} H . |
$$ | $$ | ||
Latest revision as of 09:23, 18 February 2022
A sequence of differential modules, each of which is the homology module of the preceding one. One usually studies spectral sequences of bigraded (less often graded or trigraded) modules, which are represented graphically in the form of tables in the plane superimposed on one another. More generally one can study spectral sequences of objects of an arbitrary Abelian category (e.g., bimodules, rings, algebras, co-algebras, Hopf algebras, etc.).
All known spectral sequences can be obtained from exact couples. An exact couple $ ( D ^ {1} , E ^ {1} , i ^ {1} , j ^ {1} , k ^ {1} ) $ is defined as an exact diagram of the form
$$ \begin{array}{lcccl} D ^ {1} &{} & \rightarrow ^ { {i ^ {1}} } &{} &D ^ {1} \\ {} &{} _ {k ^ {1} } &{} &{} _ {j ^ {1} } &{} \\ {} &{} &E ^ {1} &{} &{} \\ \end{array} $$
The homomorphism $ d ^ {1} = j ^ {1} k ^ {1} $ is a differential in $ E ^ {1} $. From any exact couple one can construct the derived exact couple $ ( D ^ {2} , E ^ {2} , i ^ {2} , j ^ {2} , k ^ {2} ) $, for which $ D ^ {2} = \mathop{\rm Im} i ^ {1} $ and $ E ^ {2} = H( E ^ {1} , d ^ {1} ) $. By iterating this construction one obtains the spectral sequence $ E = \{ E ^ {n} , d ^ {n} \} $.
1) The Leray spectral sequence. A filtered chain complex of modules $ ( \{ K ^ {p} \} , d) $ determines an exact couple of bigraded modules $ D _ {p,q} ^ {1} = H _ {p+q} ( K ^ {p} ) $, $ E _ {p,q} ^ {1} = H _ {p+q} ( K ^ {p} / K ^ {p-1} ) $. In the associated spectral sequence, the bidegree of the differential $ d ^ {r} $ is equal to $ (- r, r- 1) $, and
$$ E _ {p,q} ^ {r} = \frac{ \mathop{\rm Ker} ( d _ {p,q} ^ {r-1} : E _ {p,q} ^ {r-1} \rightarrow E _ {p-r+ 1,q+ r- 2} ^ {r-1} ) }{ \mathop{\rm Im} ( d _ {p+r- 1,q- r+ 2} ^ {r-1} : E _ {p+r- 1,q- r+ 2} ^ {r-1} \rightarrow E _ {p,q} ^ {r-1} ) } \simeq $$
$$ \simeq \frac{ \mathop{\rm Im} ( H _ {p+q} ( K ^ {p} / K ^ {p-r} ) \rightarrow H _ {p+q} ( K ^ {p} / K ^ {p-1} )) }{ \mathop{\rm Im} ( \partial : H _ {p+q+ 1} ( K ^ {p+r- 1} / K ^ {p} ) \rightarrow H _ {p+q} ( K ^ {p} / K ^ {p-1} )) } . $$
The modules $ F _ {p,q} = \mathop{\rm Im} ( H _ {p+q} ( K ^ {p} ) \rightarrow H _ {p+q} ( K)) $ form a filtration of $ H _ {*} ( K) $. The bigraded module
$$ E _ {p,q} ^ \infty = F _ {p,q} / F _ {p-1,q+ 1} \simeq $$
$$ \simeq \frac{ \mathop{\rm Im} ( H _ {p+q} ( K ^ {p} ) \rightarrow H _ {p+q} ( K ^ {p} / K ^ {p-1} )) }{ \mathop{\rm Im} ( \partial : H _ {p+q+ 1} ( K / K ^ {p} ) \rightarrow H _ {p+q} ( K ^ {p} / K ^ {p-1} )) } $$
is called the associated graded module of $ H _ {*} ( K) $. The filtration $ \{ K ^ {p} \} $ is called regular if $ K ^ {p} = 0 $ when $ p< 0 $, $ E _ {p,q} ^ {1} = 0 $ when $ q< 0 $ and $ K = \cup K ^ {p} $. For a regular filtration, $ E _ {p,q} ^ {r} = 0 $ when $ p< 0 $ or $ q< 0 $; such a spectral sequence is called a first-quadrant spectral sequence. Moreover, $ E _ {p,q} ^ {r} \simeq E _ {p,q} ^ {r+1} \simeq E _ {p,q} ^ \infty $ when $ r > \max ( p, q+ 1) $. In this case one says that the spectral sequence converges to $ H _ {*} ( K) $, and writes $ E _ {p,q} ^ {r} \Rightarrow H _ {p+q} ( K) $.
2) The Leray–Serre spectral sequence is a special case of the Leray spectral sequence above arising from a chain (or cochain) complex of a filtered topological space. E.g., the filtration of a CW-complex $ X $ by its skeletons gives the collapsing spectral sequence $ E _ {p,q} ^ {r} \Rightarrow H _ {p+q} ( X) $, for which $ E _ {p,q} ^ {r} = E _ {p,q} ^ \infty = 0 $ when $ q \neq 0 $ and $ E _ {n,0} ^ {2} = E _ {n,0} ^ \infty = H _ {n} ( X) $. The Leray–Serre spectral sequence is obtained from the filtration of the total space $ E $ of the Serre fibration $ F \rightarrow ^ {i} E \rightarrow ^ {p} B $ by the pre-images $ p ^ {-1} ( B ^ {n} ) $ of the skeletons $ B ^ {n} $ of the base $ B $. If the fibre $ F $ and base $ B $ are path-connected, then for every coefficient group $ G $ this gives the spectral sequence $ E _ {p,q} ^ {r} \Rightarrow H _ {p+q} ( E, G) $ with differentials $ d ^ {r} $ of bidegree $ ( - r, r- 1) $ for which
$$ E _ {p,q} ^ {1} \simeq C _ {p} ( B) \otimes H _ {q} ( F; G) \ \textrm{ and } \ E _ {p,q} ^ {2} \simeq H _ {p} ( B; {\mathcal H} _ {q} ( F; G)), $$
where $ {\mathcal H} _ {q} ( F; G) $ is a system of local coefficients over $ B $ consisting of the groups $ H _ {q} ( F; G) $. The homomorphism $ i _ {*} : H _ {n} ( F; G) \rightarrow H _ {n} ( E; G) $ coincides with the composite
$$ H _ {n} ( F; G) = E _ {0,n} ^ {2} \rightarrow E _ {0,n} ^ {r} = E _ {0,n} ^ \infty = F _ {0,n} \subset H _ {n} ( F; G), $$
and the homomorphism $ p _ {*} : H _ {n} ( E; G) \rightarrow H _ {n} ( B; G) $ coincides with the composite
$$ H _ {n} ( E; G) = F _ {n,0} \rightarrow E _ {n,0} ^ \infty = \ E _ {n,0} ^ {r} \subset \ E _ {n,0} ^ {2} = H _ {n} ( B; G), $$
where $ r $ is sufficiently large. The differential $ d _ {n,0} ^ {n} $ of the spectral sequence coincides with the transgression $ \tau : H _ {n} ( B; G) \rightarrow H _ {n-1} ( F; G) $.
This homology Leray–Serre spectral sequence is dual to the cohomology Leray–Serre spectral sequence $ E _ {r} ^ {p,q} \Rightarrow H ^ {p+q} ( E; G) $, with differentials $ d _ {r} $ of bidegree $ ( r, - r+ 1) $, for which $ E _ {2} ^ {p,q} \simeq H ^ {p} ( B; {\mathcal H} _ {q} ( F; G)) $. If $ G $ is a ring, then every term $ E _ {r} $ is a bigraded ring, $ d _ {r} $ is differentiation in $ E _ {r} $, and the multiplication in $ E _ {r+1} $ is induced by that in $ E _ {r} $. If $ G $ is a field and the base $ B $ is simply connected, then $ E _ {2} ^ {**} \simeq H ^ {*} ( B; G) \otimes H ^ {*} ( F; G) $.
3) The Atiyah–Hirzebruch (–Whitehead) spectral sequence is obtained by applying the generalized (co)homology functor $ h _ {*} $ ($ h ^ {*} $) to the same filtration of the space $ E $. In its cohomological version, $ E _ {r} ^ {p,q} \Rightarrow h ^ {p+q} ( E) $, $ E _ {2} ^ {p,q} = H ^ {p} ( B; h ^ {q} ( F )) $. In contrast to the Leray–Serre spectral sequence, the Atiyah–Hirzebruch spectral sequence for the trivial fibration $ \mathop{\rm id} : X \rightarrow X $ is in general non-collapsing.
4) An Eilenberg–Moore spectral sequence is associated with any square of fibrations
$$ \begin{array}{ccc} E & \rightarrow & X \\ \downarrow &{} &\downarrow \\ Y & \rightarrow & B \\ \end{array} $$
In its cohomological version,
$$ E _ {r} \Rightarrow H ^ {*} ( E; R), $$
$$ E _ {2} ^ {p,q} \simeq {\mathrm Tor} _ {H ^ {*} ( B;R) } ^ {p,q} ( H ^ {*} ( X; R); H ^ {*} ( Y; R)). $$
If $ R $ is a field and the square consists of $ H $-spaces and $ H $-mappings, then this is a spectral sequence in the category of bigraded Hopf algebras.
5) The Adams spectral sequence $ E _ {r} ^ {s,t} $ is defined for every prime $ p\geq 2 $ and all spaces $ X $ and $ Y $ (satisfying certain finiteness conditions). One has
$$ E _ {2} ^ {s,t} \simeq {\mathrm Ext} _ {A _ {p}} ^ {s,t} ( H ^ {*} ( X; \mathbf Z _ {p} ); H ^ {*} ( Y ; \mathbf Z _ {p} )), $$
where $ A _ {p} $ is the Steenrod algebra modulo $ p $. The bidegree of $ d _ {r} $ is equal to $ ( r, r- 1) $. This spectral sequence converges in the sense that, when $ r> s $, there is a monomorphism $ E _ {r+1} ^ {s,t} \rightarrow E _ {r} ^ {s,t} $, and so the group $ E _ \infty ^ {s,t} = \cap _ {r>s} E _ {r} ^ {s,t} $ is defined. There is a decreasing filtration $ \{ F ^ { s } \} $ of the group $ \{ Y, X \} $ of stable homotopy classes of mappings $ Y \rightarrow X $ such that
$$ F ^ { s } \{ S ^ {t-s} YX \} / F ^ { s+ 1 } \{ S ^ {t-s} Y, X \} \simeq E _ \infty ^ {s,t} , $$
and $ F ^ { \infty } = \cap _ {s\geq } 0 F ^ { s } $ consists of all elements of $ \{ Y, X \} $ of finite order prime with $ p $. When $ X= Y= S ^ {0} $, this spectral sequence enables one "in principle" to calculate the $ p $-components of the stable homotopy groups of spheres. The Adams spectral sequence has been generalized by A.S. Mishchenko and S.P. Novikov to arbitrary generalized cohomology theories. There are also extensions of the Adams spectral sequence that converge to non-stable homotopy groups.
References
[1] | R.E. Mosher, M.C. Tangora, "Cohomology operations and applications in homotopy theory" , Harper & Row (1968) |
[2] | D.B. Fuks, A.T. Fomenko, V.L. Gutenmakher, "Homotopic topology" , Moscow (1969) (In Russian) |
[3] | J.-P. Serre, "Homologie singulière des espaces fibrés. Applications" Ann. of Math. , 54 (1951) pp. 425–505 |
[4] | S. MacLane, "Homology" , Springer (1963) |
[5] | H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956) |
[6] | E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966) |
[7] | S.-T. Hu, "Homotopy theory" , Acad. Press (1959) |
[8] | R. Godement, "Topologie algébrique et théorie des faisceaux" , Hermann (1958) |
[9] | S.P. Novikov, "The methods of algebraic topology from the viewpoint of cobordism theory" Math. USSR Izv. , 31 (1967) pp. 827–913 Izv. Akad. Nauk. SSSR Ser. Mat. , 31 (1967) pp. 855–951 |
[10] | J.F. Adams, "Stable homotopy and generalised homology" , Univ. Chicago Press (1974) |
[11] | R.M. Switzer, "Algebraic topology - homotopy and homology" , Springer (1975) |
[12] | L. Smith, "Lectures on the Eilenberg–Moore spectral sequence" , Lect. notes in math. , 134 , Springer (1970) |
[13] | D.C. Ravenel, "A novices guide to the Adams–Novikov spectral sequence" , Geometric Applications of Homotopy Theory , 2 , Springer (1978) pp. 404–475 |
Comments
Let $ ( E ^ {n} , d ^ {n} ) $, $ n = 2, 3 \dots $ be a spectral sequence, so that $ E ^ {n+1} $ is the homology of $ ( E ^ {n} , d ^ {n} ) $. A spectral sequence defines a series of modules of the initial term $ E ^ {2} $, defined inductively as follows:
$$ 0 = B ^ {1} \subset B ^ {2} \subset B ^ {3} \subset \dots $$
$$ \dots \subset C ^ {3} \subset C ^ {2} \subset C ^ {1} = E ^ {2} , $$
with $ E ^ {r+1} = C ^ {r} / B ^ {r} $, and $ C ^ {r+1} /B ^ {r} $ is the kernel of $ d ^ {r} : E ^ {r} \rightarrow E ^ {r} $, while $ B ^ {r+1} /B ^ {r} $ is the image of $ d ^ {r} $. One now defines the infinity terms:
$$ C ^ \infty = \cap _ { n } C ^ {n} ,\ B ^ \infty = \ \cup _ { n } B ^ {n} ,\ E ^ \infty = C ^ \infty / B ^ \infty . $$
The terms $ E ^ {r} $ are thought of as successive approximations of $ E ^ \infty $. If $ ( E ^ {n} , d ^ {n} ) $ is a spectral sequence of bigraded modules $ E ^ {n} = \oplus E _ {p,q} ^ {n} $, $ d ^ {r} : E _ {p,q} ^ {r} \rightarrow E _ {p-r,q+ r- 1} ^ {r} $, all the $ B ^ {i} $, $ C ^ {i} $, $ B ^ \infty $, $ C ^ \infty $, $ E ^ \infty $ also carry corresponding natural bigraded structures.
Sometimes there is an initial term $ E ^ {1} $, and then the same construction is carried out with $ E ^ {1} $ instead of $ E ^ {2} $.
For a first-quadrant spectral sequence, i.e. $ E _ {p,q} ^ {2} = 0 $ for $ p< 0 $ or $ q< 0 $, for given $ p, q $ and large enough $ r $ one has that in
$$ E _ {p+r,q- r+ 1} ^ {r} \rightarrow ^ { {d ^ {r}} } E _ {p,q} ^ {r} \rightarrow ^ { {d ^ {r}} } E _ {p-r,q+ r- 1} ^ {r} $$
both the outside modules are zero, so that $ E _ {p,q} ^ {r} = E _ {p,q} ^ {r+1} = E _ {p,q} ^ \infty $ for $ r $ large enough.
For a first-quadrant spectral sequence one also always has that $ E _ {p,0} ^ {r+1} $ is a submodule of $ E _ {p,0} ^ {r} $, and $ E _ {0,q} ^ {r+1} $ is a quotient of $ E _ {0,q} ^ {r} $, giving rise to sequences of monomorphisms and epimorphisms:
$$ E _ {p,0} ^ \infty = E _ {p,0} ^ {p+1} \rightarrow \dots \rightarrow E _ {p,0} ^ {3} \rightarrow E _ {p,0} ^ {2} , $$
$$ E _ {0,q} ^ {2} \rightarrow E _ {0,q} ^ {3} \rightarrow \dots \rightarrow E _ {0,q} ^ {q+2} = E _ {0,q} ^ \infty , $$
which are known as the edge homomorphisms.
Let $ ( A _ {p} ) $ be a filtration of a module $ A $ by submodules
$$ \dots \subset A _ {p-1} \subset A _ {p} \subset A _ {p+1} \subset \dots $$
with associated graded module $ \mathop{\rm Gr} ( A) $:
$$ \mathop{\rm Gr} ( A) = \oplus _ { p } A _ {p} / A _ {p-1} . $$
A spectral sequence $ ( E _ {p} ^ {r} , d ^ {r} ) $ is said to converge to a graded module $ H $, in symbols
$$ E _ {p} ^ {r} \Rightarrow H , $$
if there is a filtration $ F _ {p} H $ of $ H $ such that
$$ \tag{* } E _ {p} ^ \infty \simeq F _ {p} H /F _ {p+1} H . $$
In the usual cases the $ E _ {p} ^ {r} $ and $ H $ are graded, and then both the filtration and the isomorphism (*) are to be compatible with the grading.
Spectral sequence. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Spectral_sequence&oldid=48763