Difference between revisions of "Thom class"
(Importing text file) |
m (fixing spaces) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | t0926601.png | ||
+ | $#A+1 = 47 n = 0 | ||
+ | $#C+1 = 47 : ~/encyclopedia/old_files/data/T092/T.0902660 Thom class | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | An element in the (generalized) cohomology group of a [[Thom space|Thom space]], generating it as a module over the cohomology ring of the base space. For a multiplicative generalized cohomology theory (cf. [[Generalized cohomology theories|Generalized cohomology theories]]) $ E ^ {*} $, | ||
+ | let $ \gamma _ {n} \in \widetilde{E} {} ^ {n} ( S ^ {n} ) $ | ||
+ | be the image of $ 1 \in \widetilde{E} {} ^ {0} ( S ^ {0} ) $ | ||
+ | under the $ n $-fold [[Suspension|suspension]] isomorphism $ \widetilde{E} {} ^ {0} ( S ^ {0} ) \cong \widetilde{E} {} ^ {n} ( S ^ {n} ) $. | ||
+ | Let $ \xi $ | ||
+ | be an $ n $-dimensional vector bundle over a path-connected finite cell complex $ X $, | ||
+ | and let $ j: S ^ {n} \rightarrow T ( \xi ) $ | ||
+ | be the corresponding inclusion into the Thom space. An element $ u \in \widetilde{E} {} ^ {n} ( T) $ | ||
+ | is called a Thom class (or orientation) of the bundle $ \xi $ | ||
+ | if $ j ^ {*} u = \epsilon \gamma _ {n} $, | ||
+ | with $ \epsilon $ | ||
+ | invertible in $ \widetilde{E} {} ^ {0} ( S ^ {0} ) $. | ||
+ | A bundle need not have a Thom class. A bundle with a Thom class (in $ E ^ {*} $) | ||
+ | is called $ E $-orientable, and a bundle with a fixed Thom class is $ E $-oriented. The number of Thom classes of an $ E $-orientable bundle over $ X $ | ||
+ | is equal to the number of elements of the group $ ( \widetilde{E} {} ^ {0} ( S ^ {0} )) ^ {*} \times \widetilde{E} {} ^ {0} ( X) $. | ||
+ | Multiplication by a Thom class gives a [[Thom isomorphism|Thom isomorphism]]. | ||
====Comments==== | ====Comments==== | ||
− | For a (topological) manifold with or without boundary | + | For a (topological) manifold with or without boundary $ ( M , \partial M ) $, |
+ | a Thom class is a Thom class for its tangent (micro) bundle. Given a Thom class $ t \in E ^ {n} ( M \times M , M \times M \setminus \Delta ) $, | ||
+ | there are isomorphisms $ \varphi _ {t} : E _ {r} ( M \setminus B, M \setminus A) \widetilde \rightarrow E ^ {n- r} ( A, B) $ (Alexander duality), $ E _ {r} ( A, B) \widetilde \rightarrow E ^ {n- r} ( M \setminus A, M \setminus B ) $, | ||
+ | $ E _ {r} ( M, \partial M ) \widetilde \rightarrow E ^ {n- r} ( M) $ (Lefschetz duality) and $ E _ {r} ( M) \widetilde \rightarrow E ^ {n- r} ( M, \partial M ) $, | ||
+ | $ E _ {r} ( M) \rightarrow E ^ {n- r} ( M) $ (Poincaré duality), where $ ( M , \partial M ) $ | ||
+ | is a compact triangulable manifold and $ B \subset A \subset M \setminus \partial M $ | ||
+ | are compact subpolyhedra, cf. [[#References|[a1]]], Chapt. 14, for more details. | ||
− | An element | + | An element $ z \in E _ {n} ( M, \partial M) $ |
+ | is called a fundamental class if for every $ x \in M \setminus \partial M $ | ||
+ | one has that $ j _ {*} ( z) \in E _ {n} ( M, M \setminus \{ x \} ) $ ($ \cong E _ {n} ( U, U \setminus \{ x \} ) \simeq E _ {n} ( \mathbf R ^ {n} , \mathbf R ^ {n} \setminus \{ 0 \} ) $) | ||
+ | is a generator of $ E _ {*} ( M, M \setminus \{ x \} ) $ | ||
+ | as a module over $ E _ {*} ( pt) $. | ||
+ | (Here $ j $ | ||
+ | is the inclusion $ ( M, \partial M ) \rightarrow ( M, M \setminus \{ x \} ) $.) | ||
+ | For the case of ordinary homology, cf. [[Fundamental class|Fundamental class]]. The relation between a fundamental class and a Thom class is given by the result that if $ M $ | ||
+ | is a compact triangulable $ n $-manifold with Thom class $ t $, | ||
+ | then there is a unique fundamental class $ z \in E _ {n} ( M, \partial M ) $ | ||
+ | such that $ \varphi _ {t} : E _ {n} ( M, \partial M ) \widetilde \rightarrow E ^ {0} ( M \setminus \partial M ) $ | ||
+ | takes $ 2 $ | ||
+ | to $ 1 $, | ||
+ | cf. [[#References|[a1]]], Prop. 14.17. Using this the Lefschetz and Poincaré duality isomorphisms defined by the Thom class $ t $ (which essentially are defined by a slant product with $ t $) | ||
+ | are given by a cap product with $ z $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R.M. Switzer, "Algebraic topology - homotopy and homology" , Springer (1975) pp. Chapt. 2</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R.M. Switzer, "Algebraic topology - homotopy and homology" , Springer (1975) pp. Chapt. 2</TD></TR></table> |
Latest revision as of 10:13, 30 January 2022
An element in the (generalized) cohomology group of a Thom space, generating it as a module over the cohomology ring of the base space. For a multiplicative generalized cohomology theory (cf. Generalized cohomology theories) $ E ^ {*} $,
let $ \gamma _ {n} \in \widetilde{E} {} ^ {n} ( S ^ {n} ) $
be the image of $ 1 \in \widetilde{E} {} ^ {0} ( S ^ {0} ) $
under the $ n $-fold suspension isomorphism $ \widetilde{E} {} ^ {0} ( S ^ {0} ) \cong \widetilde{E} {} ^ {n} ( S ^ {n} ) $.
Let $ \xi $
be an $ n $-dimensional vector bundle over a path-connected finite cell complex $ X $,
and let $ j: S ^ {n} \rightarrow T ( \xi ) $
be the corresponding inclusion into the Thom space. An element $ u \in \widetilde{E} {} ^ {n} ( T) $
is called a Thom class (or orientation) of the bundle $ \xi $
if $ j ^ {*} u = \epsilon \gamma _ {n} $,
with $ \epsilon $
invertible in $ \widetilde{E} {} ^ {0} ( S ^ {0} ) $.
A bundle need not have a Thom class. A bundle with a Thom class (in $ E ^ {*} $)
is called $ E $-orientable, and a bundle with a fixed Thom class is $ E $-oriented. The number of Thom classes of an $ E $-orientable bundle over $ X $
is equal to the number of elements of the group $ ( \widetilde{E} {} ^ {0} ( S ^ {0} )) ^ {*} \times \widetilde{E} {} ^ {0} ( X) $.
Multiplication by a Thom class gives a Thom isomorphism.
Comments
For a (topological) manifold with or without boundary $ ( M , \partial M ) $, a Thom class is a Thom class for its tangent (micro) bundle. Given a Thom class $ t \in E ^ {n} ( M \times M , M \times M \setminus \Delta ) $, there are isomorphisms $ \varphi _ {t} : E _ {r} ( M \setminus B, M \setminus A) \widetilde \rightarrow E ^ {n- r} ( A, B) $ (Alexander duality), $ E _ {r} ( A, B) \widetilde \rightarrow E ^ {n- r} ( M \setminus A, M \setminus B ) $, $ E _ {r} ( M, \partial M ) \widetilde \rightarrow E ^ {n- r} ( M) $ (Lefschetz duality) and $ E _ {r} ( M) \widetilde \rightarrow E ^ {n- r} ( M, \partial M ) $, $ E _ {r} ( M) \rightarrow E ^ {n- r} ( M) $ (Poincaré duality), where $ ( M , \partial M ) $ is a compact triangulable manifold and $ B \subset A \subset M \setminus \partial M $ are compact subpolyhedra, cf. [a1], Chapt. 14, for more details.
An element $ z \in E _ {n} ( M, \partial M) $ is called a fundamental class if for every $ x \in M \setminus \partial M $ one has that $ j _ {*} ( z) \in E _ {n} ( M, M \setminus \{ x \} ) $ ($ \cong E _ {n} ( U, U \setminus \{ x \} ) \simeq E _ {n} ( \mathbf R ^ {n} , \mathbf R ^ {n} \setminus \{ 0 \} ) $) is a generator of $ E _ {*} ( M, M \setminus \{ x \} ) $ as a module over $ E _ {*} ( pt) $. (Here $ j $ is the inclusion $ ( M, \partial M ) \rightarrow ( M, M \setminus \{ x \} ) $.) For the case of ordinary homology, cf. Fundamental class. The relation between a fundamental class and a Thom class is given by the result that if $ M $ is a compact triangulable $ n $-manifold with Thom class $ t $, then there is a unique fundamental class $ z \in E _ {n} ( M, \partial M ) $ such that $ \varphi _ {t} : E _ {n} ( M, \partial M ) \widetilde \rightarrow E ^ {0} ( M \setminus \partial M ) $ takes $ 2 $ to $ 1 $, cf. [a1], Prop. 14.17. Using this the Lefschetz and Poincaré duality isomorphisms defined by the Thom class $ t $ (which essentially are defined by a slant product with $ t $) are given by a cap product with $ z $.
References
[a1] | R.M. Switzer, "Algebraic topology - homotopy and homology" , Springer (1975) pp. Chapt. 2 |
Thom class. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Thom_class&oldid=14266