|
|
(3 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | An invariant of framed [[Surgery|surgery]] of a closed 6- or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k0553601.png" />-dimensional framed manifold.
| + | <!-- |
| + | k0553601.png |
| + | $#A+1 = 47 n = 0 |
| + | $#C+1 = 47 : ~/encyclopedia/old_files/data/K055/K.0505360 Kervaire\ANDMilnor invariant |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k0553602.png" /> be a stably-parallelizable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k0553603.png" />-connected manifold on which is given a stable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k0553605.png" />-dimensional framing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k0553606.png" />, i.e. a trivialization of the stable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k0553607.png" />-dimensional [[Normal bundle|normal bundle]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k0553608.png" /> be spheres realizing a basis of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k0553609.png" />-dimensional homology space of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536010.png" />. By summing the given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536011.png" />-trivialization <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536012.png" /> with certain trivializations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536013.png" /> of tubular neighbourhoods of the spheres <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536014.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536015.png" />, one obtains an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536016.png" />-dimensional trivialization of the stable normal bundles to the spheres <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536017.png" /> and the corresponding elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536018.png" />. The cokernel of the stable homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536019.png" /> is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536020.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536021.png" />, so that each sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536022.png" /> is put into correspondence with an element of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536023.png" /> (according to the value of the elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536024.png" /> which they take in the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536025.png" /> after factorization by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536026.png" />). This value does not depend on the choice of the elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536027.png" />, but depends only on the homology classes realized by the spheres <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536028.png" /> and the framing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536029.png" />. The [[Arf-invariant|Arf-invariant]] of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536030.png" /> so obtained satisfies the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536031.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536032.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536033.png" /> is the intersection form of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536034.png" />-dimensional homology space on the manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536035.png" />, and is called the Kervaire–Milnor invariant of this manifold with framing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536036.png" />. The pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536037.png" /> has a framed surgery to the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536038.png" /> if and only if the Kervaire–Milnor invariant of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536039.png" /> is zero.
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | Similar constructions have been carried out for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536040.png" />. The Kervaire–Milnor invariant in dimension six is the only invariant of the stable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536041.png" />-dimensional framed cobordism and defines an isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536042.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536043.png" />. However, in dimension fourteen it is not a unique invariant of the stable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536044.png" />-dimensional framed cobordism, i.e. the stable group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536045.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536046.png" />, is defined by framings on the sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536047.png" /> and on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055360/k05536048.png" />. | + | An invariant of framed [[Surgery|surgery]] of a closed 6- or 14-dimensional framed manifold. |
| + | |
| + | Let $ M ^ {6} $ |
| + | be a stably-parallelizable 2-connected manifold on which is given a stable $ N $-dimensional framing $ ( M ^ {6} , U ) $, |
| + | i.e. a trivialization of the stable $ N $-dimensional [[Normal bundle|normal bundle]]. Let $ S _ {i} ^ {3} $ |
| + | be spheres realizing a basis of the 3-dimensional homology space of $ M ^ {6} $. |
| + | By summing the given $ N $-trivialization $ U $ |
| + | with certain trivializations $ \alpha _ {i} \in \pi _ {3} ( \mathop{\rm SO} _ {3} ) $ |
| + | of tubular neighbourhoods of the spheres $ S _ {i} ^ {3} $ |
| + | in $ M ^ {6} $, |
| + | one obtains an $ ( N + 3 ) $-dimensional trivialization of the stable normal bundles to the spheres $ S _ {i} ^ {3} $ |
| + | and the corresponding elements $ \alpha _ {i} ^ {1} \in \pi _ {3} ( \mathop{\rm SO} _ {N+ 3} ) $. |
| + | The cokernel of the stable homomorphism $ s : \pi _ {n} ( \mathop{\rm SO} _ {N+ 3} ) \rightarrow \pi _ {n} ( \mathop{\rm SO} _ {N+ n} ) $ |
| + | is isomorphic to $ \mathbf Z _ {2} $ |
| + | for $ n = 3 $, |
| + | so that each sphere $ S _ {i} ^ {3} $ |
| + | is put into correspondence with an element of the group $ \pi _ {3} ( \mathop{\rm SO} _ {N+ 3} ) / \mathop{\rm Im} s $ (according to the value of the elements $ \alpha _ {i} ^ {1} $ |
| + | which they take in the group $ \mathbf Z _ {2} $ |
| + | after factorization by $ \alpha _ {i} ^ {1} $). |
| + | This value does not depend on the choice of the elements $ \alpha _ {i} $, |
| + | but depends only on the homology classes realized by the spheres $ S ^ {3} $ |
| + | and the framing $ U $. |
| + | The [[Arf-invariant|Arf-invariant]] of the function $ \phi _ {0} : H _ {3} ( M ^ {6} , \mathbf Z ) \rightarrow \mathbf Z _ {2} $ |
| + | so obtained satisfies the formula $ \phi _ {0} ( x + y ) = \phi _ {0} ( x) + \phi _ {0} ( y) + \phi ( x, y ) $ |
| + | $ \mathop{\rm mod} 2 $, |
| + | where $ \phi ( x , y ) $ |
| + | is the intersection form of the 3-dimensional homology space on the manifold $ M ^ {6} $, |
| + | and is called the Kervaire–Milnor invariant of this manifold with framing $ U $. |
| + | The pair $ ( M ^ {6} , U ) $ |
| + | has a framed surgery to the pair $ ( S ^ {6} , V ) $ |
| + | if and only if the Kervaire–Milnor invariant of $ ( M ^ {6} , U ) $ |
| + | is zero. |
| + | |
| + | Similar constructions have been carried out for $ M ^ {14} $. |
| + | The Kervaire–Milnor invariant in dimension six is the only invariant of the stable 6-dimensional framed cobordism and defines an isomorphism $ \pi _ {n+ 6} ( S ^ {n} ) \approx \mathbf Z _ {2} $, |
| + | $ n \geq 7 $. |
| + | However, in dimension fourteen it is not a unique invariant of the stable 14-dimensional framed cobordism, i.e. the stable group $ \pi _ {n+14} ( S ^ {n} ) $, |
| + | $ n \geq 16 $, |
| + | is defined by framings on the sphere $ S ^ {14} $ |
| + | and on $ S ^ {7} \times S ^ {7} $. |
| | | |
| For references see [[Kervaire invariant|Kervaire invariant]]. | | For references see [[Kervaire invariant|Kervaire invariant]]. |
An invariant of framed surgery of a closed 6- or 14-dimensional framed manifold.
Let $ M ^ {6} $
be a stably-parallelizable 2-connected manifold on which is given a stable $ N $-dimensional framing $ ( M ^ {6} , U ) $,
i.e. a trivialization of the stable $ N $-dimensional normal bundle. Let $ S _ {i} ^ {3} $
be spheres realizing a basis of the 3-dimensional homology space of $ M ^ {6} $.
By summing the given $ N $-trivialization $ U $
with certain trivializations $ \alpha _ {i} \in \pi _ {3} ( \mathop{\rm SO} _ {3} ) $
of tubular neighbourhoods of the spheres $ S _ {i} ^ {3} $
in $ M ^ {6} $,
one obtains an $ ( N + 3 ) $-dimensional trivialization of the stable normal bundles to the spheres $ S _ {i} ^ {3} $
and the corresponding elements $ \alpha _ {i} ^ {1} \in \pi _ {3} ( \mathop{\rm SO} _ {N+ 3} ) $.
The cokernel of the stable homomorphism $ s : \pi _ {n} ( \mathop{\rm SO} _ {N+ 3} ) \rightarrow \pi _ {n} ( \mathop{\rm SO} _ {N+ n} ) $
is isomorphic to $ \mathbf Z _ {2} $
for $ n = 3 $,
so that each sphere $ S _ {i} ^ {3} $
is put into correspondence with an element of the group $ \pi _ {3} ( \mathop{\rm SO} _ {N+ 3} ) / \mathop{\rm Im} s $ (according to the value of the elements $ \alpha _ {i} ^ {1} $
which they take in the group $ \mathbf Z _ {2} $
after factorization by $ \alpha _ {i} ^ {1} $).
This value does not depend on the choice of the elements $ \alpha _ {i} $,
but depends only on the homology classes realized by the spheres $ S ^ {3} $
and the framing $ U $.
The Arf-invariant of the function $ \phi _ {0} : H _ {3} ( M ^ {6} , \mathbf Z ) \rightarrow \mathbf Z _ {2} $
so obtained satisfies the formula $ \phi _ {0} ( x + y ) = \phi _ {0} ( x) + \phi _ {0} ( y) + \phi ( x, y ) $
$ \mathop{\rm mod} 2 $,
where $ \phi ( x , y ) $
is the intersection form of the 3-dimensional homology space on the manifold $ M ^ {6} $,
and is called the Kervaire–Milnor invariant of this manifold with framing $ U $.
The pair $ ( M ^ {6} , U ) $
has a framed surgery to the pair $ ( S ^ {6} , V ) $
if and only if the Kervaire–Milnor invariant of $ ( M ^ {6} , U ) $
is zero.
Similar constructions have been carried out for $ M ^ {14} $.
The Kervaire–Milnor invariant in dimension six is the only invariant of the stable 6-dimensional framed cobordism and defines an isomorphism $ \pi _ {n+ 6} ( S ^ {n} ) \approx \mathbf Z _ {2} $,
$ n \geq 7 $.
However, in dimension fourteen it is not a unique invariant of the stable 14-dimensional framed cobordism, i.e. the stable group $ \pi _ {n+14} ( S ^ {n} ) $,
$ n \geq 16 $,
is defined by framings on the sphere $ S ^ {14} $
and on $ S ^ {7} \times S ^ {7} $.
For references see Kervaire invariant.