Difference between revisions of "Shot effect"
(Importing text file) |
m (fix tex) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s0849701.png | ||
+ | $#A+1 = 15 n = 0 | ||
+ | $#C+1 = 15 : ~/encyclopedia/old_files/data/S084/S.0804970 Shot effect | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A mathematical description of voltage fluctuations at the output of a linear system at the input of which there are random perturbations produced at random moments of time. If $ W ( t , \tau ) $ | |
+ | is the output of the system at time $ t $ | ||
+ | resulting from a single pulse applied at time $ \tau \leq t $, | ||
+ | the shot effect may be described by a [[Stochastic process|stochastic process]] | ||
− | + | $$ | |
+ | X ( t) = \sum _ {\{ {k } : {\tau _ {k} \leq t } \} | ||
+ | } \alpha _ {k} W ( | ||
+ | t , \tau _ {k} ) , | ||
+ | $$ | ||
− | < | + | where $ \dots < \tau _ {-1} < \tau _ {0} < \tau _ {1} < \dots < \tau _ {k} < \dots $ |
+ | are the arrival moments of pulses, while $ \alpha _ {k} $ | ||
+ | are random variables characterizing the magnitudes of the intensities of the pulses. In the particular case when $ W ( t , \tau ) = W ( t - \tau ) $, | ||
+ | $ W ( s) = 0 $, | ||
+ | $ s \leq 0 $, | ||
+ | the $ \alpha _ {k} $ | ||
+ | are independent, uniformly-distributed random variables with finite variance, while $ \dots < \tau _ {-1} < \tau _ {0} < \tau _ {1} < {} \dots $ | ||
+ | forms a [[Poisson flow|Poisson flow]] of events with parameter $ \lambda $, | ||
+ | the process $ X ( t) $ | ||
+ | is a [[Stationary stochastic process|stationary stochastic process]] in the narrow sense, with | ||
+ | |||
+ | $$ | ||
+ | {\mathsf E} X ( t) = \lambda {\mathsf E} \alpha _ {1} \int\limits _ { 0 } ^ \infty W ( s) | ||
+ | d s , | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | {\mathsf D} X ( t) = \lambda {\mathsf E} \alpha _ {1} ^ {2} \int\limits _ { 0 } ^ \infty W ^ {2} ( s) d s . | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.H. Laning, R.G. Battin, "Random processes in automatic control" , McGraw-Hill (1956)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.H. Laning, R.G. Battin, "Random processes in automatic control" , McGraw-Hill (1956)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1a]</TD> <TD valign="top"> S.O. Rice, "Mathematical analysis of random noise" ''Bell Systems Techn. J.'' , '''23''' (1944) pp. 283–332</TD></TR><TR><TD valign="top">[a1b]</TD> <TD valign="top"> S.O. Rice, "Mathematical analysis of random noise" ''Bell Systems Techn. J.'' , '''24''' (1945) pp. 46–156</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> N. Wax (ed.) , ''Selected papers on noise and stochastic processes'' , Dover, reprint (1953)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> E. Parzen, "Stochastic processes" , Holden-Day (1962)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> E. Wong, "Stochastic processes in information and dynamical systems" , McGraw-Hill (1971)</TD></TR></table> | <table><TR><TD valign="top">[a1a]</TD> <TD valign="top"> S.O. Rice, "Mathematical analysis of random noise" ''Bell Systems Techn. J.'' , '''23''' (1944) pp. 283–332</TD></TR><TR><TD valign="top">[a1b]</TD> <TD valign="top"> S.O. Rice, "Mathematical analysis of random noise" ''Bell Systems Techn. J.'' , '''24''' (1945) pp. 46–156</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> N. Wax (ed.) , ''Selected papers on noise and stochastic processes'' , Dover, reprint (1953)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> E. Parzen, "Stochastic processes" , Holden-Day (1962)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> E. Wong, "Stochastic processes in information and dynamical systems" , McGraw-Hill (1971)</TD></TR></table> |
Latest revision as of 09:42, 20 July 2021
A mathematical description of voltage fluctuations at the output of a linear system at the input of which there are random perturbations produced at random moments of time. If $ W ( t , \tau ) $
is the output of the system at time $ t $
resulting from a single pulse applied at time $ \tau \leq t $,
the shot effect may be described by a stochastic process
$$ X ( t) = \sum _ {\{ {k } : {\tau _ {k} \leq t } \} } \alpha _ {k} W ( t , \tau _ {k} ) , $$
where $ \dots < \tau _ {-1} < \tau _ {0} < \tau _ {1} < \dots < \tau _ {k} < \dots $ are the arrival moments of pulses, while $ \alpha _ {k} $ are random variables characterizing the magnitudes of the intensities of the pulses. In the particular case when $ W ( t , \tau ) = W ( t - \tau ) $, $ W ( s) = 0 $, $ s \leq 0 $, the $ \alpha _ {k} $ are independent, uniformly-distributed random variables with finite variance, while $ \dots < \tau _ {-1} < \tau _ {0} < \tau _ {1} < {} \dots $ forms a Poisson flow of events with parameter $ \lambda $, the process $ X ( t) $ is a stationary stochastic process in the narrow sense, with
$$ {\mathsf E} X ( t) = \lambda {\mathsf E} \alpha _ {1} \int\limits _ { 0 } ^ \infty W ( s) d s , $$
$$ {\mathsf D} X ( t) = \lambda {\mathsf E} \alpha _ {1} ^ {2} \int\limits _ { 0 } ^ \infty W ^ {2} ( s) d s . $$
References
[1] | J.H. Laning, R.G. Battin, "Random processes in automatic control" , McGraw-Hill (1956) |
Comments
References
[a1a] | S.O. Rice, "Mathematical analysis of random noise" Bell Systems Techn. J. , 23 (1944) pp. 283–332 |
[a1b] | S.O. Rice, "Mathematical analysis of random noise" Bell Systems Techn. J. , 24 (1945) pp. 46–156 |
[a2] | N. Wax (ed.) , Selected papers on noise and stochastic processes , Dover, reprint (1953) |
[a3] | E. Parzen, "Stochastic processes" , Holden-Day (1962) |
[a4] | E. Wong, "Stochastic processes in information and dynamical systems" , McGraw-Hill (1971) |
Shot effect. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Shot_effect&oldid=15483