Difference between revisions of "Whitehead multiplication"
(Importing text file) |
m (fix tex) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | w0977901.png | ||
+ | $#A+1 = 43 n = 0 | ||
+ | $#C+1 = 43 : ~/encyclopedia/old_files/data/W097/W.0907790 Whitehead multiplication | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
+ | |||
+ | A multiplication in homotopy groups $ \pi _ {m} ( X) \times \pi _ {n} ( X) \rightarrow \pi _ {m- n+ 1} ( X) $, | ||
+ | defined by G.W. Whitehead. In $ S ^ {k} $ | ||
+ | one takes a fixed decomposition into two cells $ e ^ {0} $ | ||
+ | and $ e ^ {k} $. | ||
+ | Then the product of spheres $ S ^ {m} \times S ^ {n} $ | ||
+ | has a decomposition into cells $ e ^ {0} $, | ||
+ | $ e ^ {m} $, | ||
+ | $ e ^ {n} $, | ||
+ | $ e ^ {m+n} $. | ||
+ | Therefore the characteristic mapping $ \phi _ {n,m } $: | ||
+ | |||
+ | $$ | ||
+ | \partial e ^ {n+m} = S ^ {n+ m- 1} \rightarrow S ^ {m} \times S ^ {n} | ||
+ | $$ | ||
factorizes as | factorizes as | ||
− | + | $$ | |
+ | S ^ {m+ n- 1} \mathop \rightarrow \limits ^ { {W( m,n) }} S ^ {m} \lor S ^ {n} \rightarrow S ^ {m} \times | ||
+ | S ^ {n} , | ||
+ | $$ | ||
− | where | + | where $ S ^ {m} \lor S ^ {n} $ |
+ | is a bouquet of spheres. Now, take classes $ \alpha \in \pi _ {m} ( X) $ | ||
+ | and $ \beta \in \pi _ {n} ( X) $, | ||
+ | represented by mappings $ f $ | ||
+ | and $ g $. | ||
+ | Then the Whitehead product $ [ \alpha , \beta ] \in \pi _ {n+ m- 1} ( X) $ | ||
+ | is given by the composition | ||
− | + | $$ | |
+ | S ^ {m+ n- 1} \mathop \rightarrow \limits ^ { {W( n,m) }} S ^ {m} \lor S ^ {n} \mathop \rightarrow \limits ^ { {f\lor g }} X. | ||
+ | $$ | ||
The following properties are satisfied by this product: | The following properties are satisfied by this product: | ||
− | 1) | + | 1) $ [ \alpha , \beta ] = (- 1) ^ { \mathop{\rm deg} \alpha \mathop{\rm deg} \beta } [ \beta , \alpha ] $; |
− | 2) if | + | 2) if $ \alpha , \beta \in \pi _ {1} ( X) $, |
+ | then $ [ \alpha , \beta ] = \alpha \beta \alpha ^ {-1} \beta ^ {-1} $; | ||
− | 3) if | + | 3) if $ X $ |
+ | is $ n $- | ||
+ | simple, then $ [ \alpha , \beta ] = 0 $ | ||
+ | for $ \alpha \in \pi _ {1} ( X) $, | ||
+ | $ \beta \in \pi _ {n} ( X) $; | ||
− | 4) if | + | 4) if $ [ \alpha , \beta ]= 0 $ |
+ | for all $ \alpha \in \pi _ {1} ( X) $, | ||
+ | $ \beta \in \pi _ {n} ( X) $, | ||
+ | then $ X $ | ||
+ | is $ n $- | ||
+ | simple; | ||
− | 5) if | + | 5) if $ \alpha \in \pi _ {n} ( X) $, |
+ | $ \beta \in \pi _ {m} ( X) $, | ||
+ | $ \gamma \in \pi _ {k} ( X) $, | ||
+ | $ n , m, k > 1 $, | ||
+ | then | ||
− | + | $$ | |
+ | (- 1) ^ {nk} [[ \alpha , \beta ] , \gamma ] +(- 1) ^ {mn} [[ \beta , \gamma ] ,\ | ||
+ | \alpha ] + (- 1) ^ {mk} [[ \gamma , \alpha ] , \beta ] = 0; | ||
+ | $$ | ||
− | 6) the element | + | 6) the element $ [ i _ {1} , i _ {2} ] \in \pi _ {3} ( S ^ {2} ) $, |
+ | where $ i _ {2} \in \pi _ {2} ( S ^ {2} )= \mathbf Z $ | ||
+ | is a generator, is equal to twice the generator of $ \pi _ {3} ( S ^ {2} ) $; | ||
− | 7) the kernel of the epimorphism | + | 7) the kernel of the epimorphism $ \Sigma : \pi _ {4n-1} ( S ^ {2n} ) \rightarrow \pi _ {4n} ( S ^ {2n+ 1} ) $ |
+ | is generated by one element, $ [ i _ {2n} , i _ {2n} ] \in \pi _ {4n-1} ( S ^ {2n} ) $, | ||
+ | where $ i _ {2n} \in \pi _ {2n} ( S ^ {2n} ) $ | ||
+ | is the canonical generator. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1a]</TD> <TD valign="top"> G.W. Whitehead, "On products in homotopy groups" ''Ann. of Math.'' , '''47''' (1946) pp. 460–475</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top"> G.W. Whitehead, "A generalization of the Hopf invariant" ''Ann. of Math.'' , '''51''' (1950) pp. 192–237</TD></TR></table> | <table><TR><TD valign="top">[1a]</TD> <TD valign="top"> G.W. Whitehead, "On products in homotopy groups" ''Ann. of Math.'' , '''47''' (1946) pp. 460–475</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top"> G.W. Whitehead, "A generalization of the Hopf invariant" ''Ann. of Math.'' , '''51''' (1950) pp. 192–237</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G.W. Whitehead, "Elements of homotopy theory" , Springer (1978)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966) pp. 419–420</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S.-T. Hu, "Homotopy theory" , Acad. Press (1959) pp. 138–139</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G.W. Whitehead, "Elements of homotopy theory" , Springer (1978)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966) pp. 419–420</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S.-T. Hu, "Homotopy theory" , Acad. Press (1959) pp. 138–139</TD></TR></table> |
Latest revision as of 15:48, 29 March 2021
A multiplication in homotopy groups $ \pi _ {m} ( X) \times \pi _ {n} ( X) \rightarrow \pi _ {m- n+ 1} ( X) $,
defined by G.W. Whitehead. In $ S ^ {k} $
one takes a fixed decomposition into two cells $ e ^ {0} $
and $ e ^ {k} $.
Then the product of spheres $ S ^ {m} \times S ^ {n} $
has a decomposition into cells $ e ^ {0} $,
$ e ^ {m} $,
$ e ^ {n} $,
$ e ^ {m+n} $.
Therefore the characteristic mapping $ \phi _ {n,m } $:
$$ \partial e ^ {n+m} = S ^ {n+ m- 1} \rightarrow S ^ {m} \times S ^ {n} $$
factorizes as
$$ S ^ {m+ n- 1} \mathop \rightarrow \limits ^ { {W( m,n) }} S ^ {m} \lor S ^ {n} \rightarrow S ^ {m} \times S ^ {n} , $$
where $ S ^ {m} \lor S ^ {n} $ is a bouquet of spheres. Now, take classes $ \alpha \in \pi _ {m} ( X) $ and $ \beta \in \pi _ {n} ( X) $, represented by mappings $ f $ and $ g $. Then the Whitehead product $ [ \alpha , \beta ] \in \pi _ {n+ m- 1} ( X) $ is given by the composition
$$ S ^ {m+ n- 1} \mathop \rightarrow \limits ^ { {W( n,m) }} S ^ {m} \lor S ^ {n} \mathop \rightarrow \limits ^ { {f\lor g }} X. $$
The following properties are satisfied by this product:
1) $ [ \alpha , \beta ] = (- 1) ^ { \mathop{\rm deg} \alpha \mathop{\rm deg} \beta } [ \beta , \alpha ] $;
2) if $ \alpha , \beta \in \pi _ {1} ( X) $, then $ [ \alpha , \beta ] = \alpha \beta \alpha ^ {-1} \beta ^ {-1} $;
3) if $ X $ is $ n $- simple, then $ [ \alpha , \beta ] = 0 $ for $ \alpha \in \pi _ {1} ( X) $, $ \beta \in \pi _ {n} ( X) $;
4) if $ [ \alpha , \beta ]= 0 $ for all $ \alpha \in \pi _ {1} ( X) $, $ \beta \in \pi _ {n} ( X) $, then $ X $ is $ n $- simple;
5) if $ \alpha \in \pi _ {n} ( X) $, $ \beta \in \pi _ {m} ( X) $, $ \gamma \in \pi _ {k} ( X) $, $ n , m, k > 1 $, then
$$ (- 1) ^ {nk} [[ \alpha , \beta ] , \gamma ] +(- 1) ^ {mn} [[ \beta , \gamma ] ,\ \alpha ] + (- 1) ^ {mk} [[ \gamma , \alpha ] , \beta ] = 0; $$
6) the element $ [ i _ {1} , i _ {2} ] \in \pi _ {3} ( S ^ {2} ) $, where $ i _ {2} \in \pi _ {2} ( S ^ {2} )= \mathbf Z $ is a generator, is equal to twice the generator of $ \pi _ {3} ( S ^ {2} ) $;
7) the kernel of the epimorphism $ \Sigma : \pi _ {4n-1} ( S ^ {2n} ) \rightarrow \pi _ {4n} ( S ^ {2n+ 1} ) $ is generated by one element, $ [ i _ {2n} , i _ {2n} ] \in \pi _ {4n-1} ( S ^ {2n} ) $, where $ i _ {2n} \in \pi _ {2n} ( S ^ {2n} ) $ is the canonical generator.
References
[1a] | G.W. Whitehead, "On products in homotopy groups" Ann. of Math. , 47 (1946) pp. 460–475 |
[1b] | G.W. Whitehead, "A generalization of the Hopf invariant" Ann. of Math. , 51 (1950) pp. 192–237 |
Comments
References
[a1] | G.W. Whitehead, "Elements of homotopy theory" , Springer (1978) |
[a2] | E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966) pp. 419–420 |
[a3] | S.-T. Hu, "Homotopy theory" , Acad. Press (1959) pp. 138–139 |
Whitehead multiplication. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Whitehead_multiplication&oldid=18732