Namespaces
Variants
Actions

Difference between revisions of "Integral logarithm"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (fix tex)
 
Line 57: Line 57:
 
  \mathop{\rm li} ( x)  =  c
 
  \mathop{\rm li} ( x)  =  c
 
+  \mathop{\rm ln}  |  \mathop{\rm ln}  x | +
 
+  \mathop{\rm ln}  |  \mathop{\rm ln}  x | +
\sum _ { k= } 1 ^  \infty   
+
\sum _ { k= 1} ^  \infty   
  
 
\frac{(  \mathop{\rm ln}  x )  ^ {k} }{k ! k }
 
\frac{(  \mathop{\rm ln}  x )  ^ {k} }{k ! k }
Line 71: Line 71:
 
  \mathop{\rm li} ( z)  =  c +
 
  \mathop{\rm li} ( z)  =  c +
 
  \mathop{\rm ln} ( -  \mathop{\rm ln}  z ) +
 
  \mathop{\rm ln} ( -  \mathop{\rm ln}  z ) +
\sum _ { k= } 1 ^  \infty   
+
\sum _ { k=1 } ^  \infty   
  
 
\frac{(  \mathop{\rm ln}  z )  ^ {k} }{k ! k }
 
\frac{(  \mathop{\rm ln}  z )  ^ {k} }{k ! k }
Line 88: Line 88:
 
$$  
 
$$  
 
\lim\limits _ {\eta \downarrow 0 }  \mathop{\rm li} ( x \pm  i \eta )
 
\lim\limits _ {\eta \downarrow 0 }  \mathop{\rm li} ( x \pm  i \eta )
  =  \mathop{\rm li}  x \mps \pi i ,\ \  
+
  =  \mathop{\rm li}  x \mp \pi i ,\ \  
 
x > 1 .
 
x > 1 .
 
$$
 
$$
Line 131: Line 131:
 
the value 
 
the value    \mathop{\rm li} ( x)
 
is a good approximation of    \pi ( x) ,  
 
is a good approximation of    \pi ( x) ,  
the number of primes smaller than    x (
+
the number of primes smaller than    x
see [[De la Vallée-Poussin theorem|de la Vallée-Poussin theorem]]; [[Distribution of prime numbers|Distribution of prime numbers]]; [[Prime number|Prime number]]).
+
(see [[De la Vallée-Poussin theorem|de la Vallée-Poussin theorem]]; [[Distribution of prime numbers|Distribution of prime numbers]]; [[Prime number|Prime number]]).

Latest revision as of 18:28, 25 February 2021


The special function defined, for positive real x , x \neq 1 , by

\mathop{\rm li} ( x) = \ \int\limits _ { 0 } ^ { x } \frac{dt}{ \mathop{\rm ln} t } ;

for x > 1 the integrand has at t = 1 an infinite discontinuity and the integral logarithm is taken to be the principal value

\mathop{\rm li} ( x) = \ \lim\limits _ {\epsilon \downarrow 0 } \ \left \{ \int\limits _ { 0 } ^ { {1 } - \epsilon } \frac{dt}{ \mathop{\rm ln} t } + \int\limits _ {1 + \epsilon } ^ { x } \frac{dt}{ \mathop{\rm ln} t } \right \} .

The graph of the integral logarithm is given in the article Integral exponential function. For x small:

\mathop{\rm li} ( x) \approx \frac{x}{ \mathop{\rm ln} ( 1 / x ) } .

The integral logarithm has for positive real x the series representation

\mathop{\rm li} ( x) = c + \mathop{\rm ln} | \mathop{\rm ln} x | + \sum _ { k= 1} ^ \infty \frac{( \mathop{\rm ln} x ) ^ {k} }{k ! k } ,\ \ k > 0 ,\ \ x \neq 1 ,

where c = 0.5772 \dots is the Euler constant. As a function of the complex variable z ,

\mathop{\rm li} ( z) = c + \mathop{\rm ln} ( - \mathop{\rm ln} z ) + \sum _ { k=1 } ^ \infty \frac{( \mathop{\rm ln} z ) ^ {k} }{k ! k }

is a single-valued analytic function in the complex z - plane with slits along the real axis from - \infty to 0 and from 1 to + \infty ( the imaginary part of the logarithms is taken within the limits - \pi and \pi ). The behaviour of \mathop{\rm li} x along ( 1 , + \infty ) is described by

\lim\limits _ {\eta \downarrow 0 } \mathop{\rm li} ( x \pm i \eta ) = \mathop{\rm li} x \mp \pi i ,\ \ x > 1 .

The integral logarithm is related to the integral exponential function \mathop{\rm Ei} ( x) by

\mathop{\rm li} ( x) = \ \mathop{\rm Ei} ( \mathop{\rm ln} x ) ,\ \ x < 1 ; \ \ \mathop{\rm Ei} ( x) = \ \mathop{\rm li} ( e ^ {x} ) ,\ \ x < 0 .

For real x > 0 one sometimes uses the notation

\mathop{\rm Li} ( x) = \ \left \{ \begin{array}{ll} \mathop{\rm li} ( x) = \mathop{\rm Ei} ( \mathop{\rm ln} x ) &\textrm{ for } 0 < x < 1 , \\ \mathop{\rm li} ( x) + \pi i = \mathop{\rm Ei} ^ {*} ( \mathop{\rm ln} x ) &\textrm{ for } x > 1 . \\ \end{array} \right .

For references, see Integral cosine.

Comments

The function \mathop{\rm li} is better known as the logarithmic integral. It can, of course, be defined by the integral (as above) for z \in \mathbf C \setminus \{ {x \in \mathbf R } : {x \leq 0 \textrm{ or } x \geq 1 } \} .

The series representation for positive x , x \neq 1 , is then also said to define the modified logarithmic integral, and is the boundary value of \mathop{\rm li} ( x + i \eta ) \pm \pi i , x > 1 , \eta \rightarrow 0 . For real x > 1 the value \mathop{\rm li} ( x) is a good approximation of \pi ( x) , the number of primes smaller than x (see de la Vallée-Poussin theorem; Distribution of prime numbers; Prime number).

How to Cite This Entry:
Integral logarithm. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Integral_logarithm&oldid=47376
This article was adapted from an original article by A.B. Ivanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article