Difference between revisions of "Integral logarithm"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
m (fix tex) |
||
Line 57: | Line 57: | ||
\mathop{\rm li} ( x) = c | \mathop{\rm li} ( x) = c | ||
+ \mathop{\rm ln} | \mathop{\rm ln} x | + | + \mathop{\rm ln} | \mathop{\rm ln} x | + | ||
− | \sum _ { k= } | + | \sum _ { k= 1} ^ \infty |
\frac{( \mathop{\rm ln} x ) ^ {k} }{k ! k } | \frac{( \mathop{\rm ln} x ) ^ {k} }{k ! k } | ||
Line 71: | Line 71: | ||
\mathop{\rm li} ( z) = c + | \mathop{\rm li} ( z) = c + | ||
\mathop{\rm ln} ( - \mathop{\rm ln} z ) + | \mathop{\rm ln} ( - \mathop{\rm ln} z ) + | ||
− | \sum _ { k= } | + | \sum _ { k=1 } ^ \infty |
\frac{( \mathop{\rm ln} z ) ^ {k} }{k ! k } | \frac{( \mathop{\rm ln} z ) ^ {k} }{k ! k } | ||
Line 88: | Line 88: | ||
$$ | $$ | ||
\lim\limits _ {\eta \downarrow 0 } \mathop{\rm li} ( x \pm i \eta ) | \lim\limits _ {\eta \downarrow 0 } \mathop{\rm li} ( x \pm i \eta ) | ||
− | = \mathop{\rm li} x \ | + | = \mathop{\rm li} x \mp \pi i ,\ \ |
x > 1 . | x > 1 . | ||
$$ | $$ | ||
Line 131: | Line 131: | ||
the value | the value \mathop{\rm li} ( x) | ||
is a good approximation of \pi ( x) , | is a good approximation of \pi ( x) , | ||
− | the number of primes smaller than x ( | + | the number of primes smaller than x |
− | see [[De la Vallée-Poussin theorem|de la Vallée-Poussin theorem]]; [[Distribution of prime numbers|Distribution of prime numbers]]; [[Prime number|Prime number]]). | + | (see [[De la Vallée-Poussin theorem|de la Vallée-Poussin theorem]]; [[Distribution of prime numbers|Distribution of prime numbers]]; [[Prime number|Prime number]]). |
Latest revision as of 18:28, 25 February 2021
The special function defined, for positive real x ,
x \neq 1 ,
by
\mathop{\rm li} ( x) = \ \int\limits _ { 0 } ^ { x } \frac{dt}{ \mathop{\rm ln} t } ;
for x > 1 the integrand has at t = 1 an infinite discontinuity and the integral logarithm is taken to be the principal value
\mathop{\rm li} ( x) = \ \lim\limits _ {\epsilon \downarrow 0 } \ \left \{ \int\limits _ { 0 } ^ { {1 } - \epsilon } \frac{dt}{ \mathop{\rm ln} t } + \int\limits _ {1 + \epsilon } ^ { x } \frac{dt}{ \mathop{\rm ln} t } \right \} .
The graph of the integral logarithm is given in the article Integral exponential function. For x small:
\mathop{\rm li} ( x) \approx \frac{x}{ \mathop{\rm ln} ( 1 / x ) } .
The integral logarithm has for positive real x the series representation
\mathop{\rm li} ( x) = c + \mathop{\rm ln} | \mathop{\rm ln} x | + \sum _ { k= 1} ^ \infty \frac{( \mathop{\rm ln} x ) ^ {k} }{k ! k } ,\ \ k > 0 ,\ \ x \neq 1 ,
where c = 0.5772 \dots is the Euler constant. As a function of the complex variable z ,
\mathop{\rm li} ( z) = c + \mathop{\rm ln} ( - \mathop{\rm ln} z ) + \sum _ { k=1 } ^ \infty \frac{( \mathop{\rm ln} z ) ^ {k} }{k ! k }
is a single-valued analytic function in the complex z - plane with slits along the real axis from - \infty to 0 and from 1 to + \infty ( the imaginary part of the logarithms is taken within the limits - \pi and \pi ). The behaviour of \mathop{\rm li} x along ( 1 , + \infty ) is described by
\lim\limits _ {\eta \downarrow 0 } \mathop{\rm li} ( x \pm i \eta ) = \mathop{\rm li} x \mp \pi i ,\ \ x > 1 .
The integral logarithm is related to the integral exponential function \mathop{\rm Ei} ( x) by
\mathop{\rm li} ( x) = \ \mathop{\rm Ei} ( \mathop{\rm ln} x ) ,\ \ x < 1 ; \ \ \mathop{\rm Ei} ( x) = \ \mathop{\rm li} ( e ^ {x} ) ,\ \ x < 0 .
For real x > 0 one sometimes uses the notation
\mathop{\rm Li} ( x) = \ \left \{ \begin{array}{ll} \mathop{\rm li} ( x) = \mathop{\rm Ei} ( \mathop{\rm ln} x ) &\textrm{ for } 0 < x < 1 , \\ \mathop{\rm li} ( x) + \pi i = \mathop{\rm Ei} ^ {*} ( \mathop{\rm ln} x ) &\textrm{ for } x > 1 . \\ \end{array} \right .
For references, see Integral cosine.
Comments
The function \mathop{\rm li} is better known as the logarithmic integral. It can, of course, be defined by the integral (as above) for z \in \mathbf C \setminus \{ {x \in \mathbf R } : {x \leq 0 \textrm{ or } x \geq 1 } \} .
The series representation for positive x , x \neq 1 , is then also said to define the modified logarithmic integral, and is the boundary value of \mathop{\rm li} ( x + i \eta ) \pm \pi i , x > 1 , \eta \rightarrow 0 . For real x > 1 the value \mathop{\rm li} ( x) is a good approximation of \pi ( x) , the number of primes smaller than x (see de la Vallée-Poussin theorem; Distribution of prime numbers; Prime number).
Integral logarithm. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Integral_logarithm&oldid=47376